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About This Topical Issue...

In the industrial society in which we live there is a growing need for rather complex measurement
techniques to characterize the properties of materials and manufactured articles and their defects both
during production and in actual use. Successful implementation of these techniques requires both a
basic understanding of the physical processes involved in such measurements and theoretical models
which relate measured quantities to actual material properties.

Current NBS efforts in this area are represented by the seven papers of this topical issue on
““Scientific Aspects of Non-Destructive Evaluation.”” These papers reflect three different types of
research. Three of them deal with new experimental techniques. Laser light scattering (Vorburger et al.)
provides an attractive alternative technique to stylus measurements as a probe of surface roughness.
Small angle neutron scattering (Hardman-Rhyne et al., Fields ef al.) may be used as a unique probe of
the internal structure of materials which can provide reference standards for intercomparison with more
conventional non-destructive evaluation techniques. Three articles (those by Kahn, Simmons and
Wadley and Norton et al.) are not concerned directly with measurement but deal with the development
of mathematical models which will relate observed signals in electromagnetic, acoustic emission and
ultrasonic measurement systems to internal properties or defects in materials. The development of such
models is an important part of the science of measurement. The last article (Eitzen and Wadley) is of
yet a different type. It is concerned with the problem of acquiring a basic understanding of the acoustic
emission technique.

The seven papers in this issue, although they are representative, reflect only a small fraction of
current research activities at NBS in the areas of non-destructive evaluation. Other articles will appear in
following issues.

John W, Cooper
for the Board of Editors
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An instrument has been developed to study surface roughness by measuring the angular distributions of
scattered light. In our instrument, a beam from a He-Ne laser illuminates the surface at an angle of incidence
which may be varied. The scattered light distribution is detected by an array of 87 fiber optic sensors
positioned in a semicircular yoke which can be rotated about its axis so that the scattered radiation may be
sampled over an entire hemisphere. The output from the detector array is digitized, stored, and analyzed in a
laboratory computer. The initial experiments have concentrated -on measurements of stainless steel surfaces
which are highly two-dimensional and which yield scattering distributions that are localized in the plane of
incidence. The results are analyzed by comparing the angular scattering data with theoretical angular
scattering distributions computed from digitized roughness profiles measured by a stylus instrument. The
theoretical distributions are calculated by substituting the roughness profiles into the operand of an integral
equation for electromagnetic scattering developed by Beckmann and Spizzichino. This approach directly
tests the accuracy of the basic optical theory.
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1. Introduction

Optical scattering techniques have been used for a
long time to monitor the surface roughness of
industrial parts ranging from crankshaft bearings [1]'
to x-ray mirror prototypes [2]. These techniques lend
themselves to on-line surface inspection in industry
because they are intrinsically area-averaging, high-
speed methods. A single measurement can yield a
quantity that is closely related to some average
property of the surface roughness [3]. However,
optical scattering methods are almost exclusively used
in an empirical way because the quantitative deduction

About the Authors, Paper: T. V. Vorburger, E. C.
Teague, F. E. Scire, M. J. McLay, and D. E. Gilsinn
are with the Mechanical Production Metrology
Division in NBS’ Center for Manufacturing
Engineering. The work on which they report was
supported by NASA and the NBS Office of
Nondestructive Evaluation.

! Figures in brackets indicate literature references at the end of
this paper.

of roughness parameters from optical measurements is
extremely difficult because of the complexity of
optical scattering itself. Empirical approaches [1,4]
have been developed which rely on the use of a
number of calibration surfaces with known roughness
parameters that are similar to the unknown surfaces to
be measured. These calibration standards enable the
operator to calibrate the surface measuring instrument
empirically. Although this comparator approach is
effective, we attempt here to derive optical scattering
quantities from more basic principles. Then perhaps,
optical methods could be applied to surface roughness

problems more generally and with a higher degree of
confidence.

This difficulty of understanding is particularly acute
for engineering surfaces where the roughness heights
are typically in the range between 0.1 and 1.0 pum.
He-Ne lasers with wavelength A=0.6328 um are
commonly used in such applications because of their
relative safety, good stability, ease of alignment, and
other features. However, this means that the
roughness heights are on the same order of magnitude
as the wavelength of light [5]. The mathematical
description is much more complicated in this regime



than it is for optically smooth surfaces [6,7] where the
effect of surface roughness is a small perturbation on
the basic phenomenon of specular optical scattering,
i.e., where the surface basically functions like a mirror.

The present work is an attempt to develop a better
mathematical description of optical scattering
phenomena for engineering surfaces. The ultimate goal
of this work is an optical scattering apparatus for
reliable and routine measurements of roughness
parameters without resorting to specially fabricated
comparator standards.

After a brief experimental overview in section 2, we
discuss the apparatus in detail in section 3. There
follows an outline of the theory in section 4. Section 5
deals with the experimental results, and section 6
(Analysis) compares the experimental and theoretical
scattering distributions. In section 7 we discuss the
limitations of the present work as well as previous
work and probable future directions. Some
experimental notes are included as an appendix.

2. Experimental Overview

When a beam of laser light is reflected by a rough
surface, the radiation is scattered into an angular
distribution (fig. 1) according to the laws of physical
optics. The intensity and the pattern of the scattered
radiation depend on the roughness heights, the
roughness spatial wavelengths, and the wavelength of
the light [6-8]. In general, small spatial wavelength
components diffract the light into large angles relative
to the specular direction, and long spatial wavelength
components diffract the light into small angles. Most
surfaces have a broad range of spatial wavelengths,

Light
Source

Surface

Figure 1-Schematic diagram of a laser beam scattered by a rough
surface. The pattern consists of the overall angular distribution
envelope (AD) and a fine structure known as speckle. A simple
optical detection system is also shown. Detector 3 measures the
intensity in the specular direction. Detectors 1, 2, 4, 5 measure
other components of the angular distribution.

and the light is therefore diffracted over a range of
angles.

For very smooth surfaces, most of the reflected
light propagates in the specular direction. As the
roughness increases, the intensity of the specular beam
decreases while the diffracted radiation increases in
intensity and becomes more diffuse. In addition, the
angular distribution of diffuse radiation consists of a
fine grainy structure called speckle [9], which shows
up as intensity contrast between neighboring points in
the scattered field. Finally, the light wave may
undergo a change in its polarization state upon
reflection from the surface.

In this work, we study how the angular distribution
is related to the detailed topography of engineering
surfaces. In particular we explore the following
fundamental question: If the detailed surface
topography were perfectly known, could the angular
scattering distribution be predicted from available
optical scattering theories? If so, that basic knowledge
might lead to optical techniques for measuring the
roughness of surfaces without resorting to calibration
artifacts. If one cannot relate optical scattering to
surface roughness in this very straightforward way,
then it is likely that metrologists will be limited to
empirical approaches for the characterization of
engineering surfaces by optical scattering.

Our approach uses an optical instrument called
DALLAS (detector array for laser light angular
scattering), a stylus profiling instrument interfaced to a
minicomputer for accurate characterization of surface
topography, and a fairly elementary optical scattering
theory. Surface profiles measured by the stylus
instrument are substituted into the scattering theory to
generate angular distributions which may be compared
with those directly measured by DALLAS for the
same surfaces. We report here some preliminary
results with this equipment.

3. Apparatus

A block diagram of the twofold apparatus is shown
in figure 2. In the DALLAS experiment, a beam of
laser light illuminates the rough surface under test and
the scattered radiation is collected by an array of 87
detectors. The signals are sequentially routed by a
scanner to a digital voltmeter which functions as an
analog-to-digital converter. The resulting angular
distribution is stored in a desktop microcomputer and
may be compared with distributions generated from
the stylus experiment. In the latter system, a
commercial stylus instrument measures surface profiles
and stores them on a magnetic disk on a large
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minicomputer. Optical scattering distributions are then
calculated from these profiles and the results may be
transmitted to the microcomputer by a hardwired RS-
232 interface.

3.1 Optical Apparatus

The apparatus for measuring intensity distributions
as a function of scattering angle from surfaces is
shown in figure 3 and consists of an illumination
system and a detection system.

The illumination system consists of a 5 mW He-Ne
laser with linear polarization, a quarter-wave plate to
produce circular polarization, an automatic shutter,
and a rotating assembly of two mirrors, M1 and M2,
to direct the laser beam onto the specimen surface.
The angle of incidence may be varied by a stepping
motor which controls the angular position of M1 and
M2. The illuminated region of the specimen is a spot
approximately 2 mm X3 mm, depending on the angle
of incidence. The detection system consists of an array
of 87 detectors spaced 2° apart in a semicircular yoke

(diam=164 mm) which is centered on the illumination
spot on the specimen. The yoke can be rotated about
one axis by a stepping motor so that the detectors can
sample practically the entire hemisphere of radiation
scattered from the surface.

Each detector consists of a lens, an optical fiber, and
a PIN Si photodiode with an integral op-amp circuit.
Each lens has a diameter of 4.4 mm and subtends an
angle of about 1.5° in the yoke. It collects the
radiation and focuses it onto the fiber which transmits
the radiation to the photodiode. The output voltage
signals from the op-amps are scanned by a 100-channel
scanner, digitized, and stored in the desktop
microcomputer using BASIC language software. At
present, a single angular scan of the 87 detectors takes
about 10 s and yields intensity distributions which span
over 5 orders of magnitude in intensity. That is, the
rms noise of the apparatus is approximately 50 pV,
and the saturation voltage of the detectors is about 9
V. The nonlinearity of two typical detectors was
measured by comparing their voltage outputs with
that of a highly linear, standard Si detector. Over a
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Figure 3-DALLAS in operation. Mirrors (M1 and M2) direct laser beam onto the surface of the specimen located under semicircular yoke

supporting the detection system.

dynamic range of 10° in input light intensity, the
nonlinearity of the output voltage was less than 2% or
50 pV, whichever is greater. The relative linearity of
the 87 detectors with light intensity (tracking) has also
been checked. Over 3 1/2 orders of magnitude of
light intensity, the output voltages track one another
with a standard deviation of 2% or 2.5 times the rms
noise, whichever is greater.

The 87-point angular distributions may be stored
permanently on magnetic tape cassettes or plotted on
the CRT of the microcomputer for comparison with
the angular scattering calculations predicted from
stylus data. Additional notes on the detection system
are given in section 8.

3.2 Stylus Apparatus

The stylus system has been described previously
[10-12]. It consists of a Talystep® stylus instrument

% Certain kinds of commercial equipment are identified in this
article to specify adequately the experimental procedure. In no case
does such identification imply recommendation or endorsement by
the National Bureau of Standards, nor does it imply that the
equipment identified is necessarily the best available for the purpose.

interfaced to a minicomputer. As the stylus traverses
the peaks and valleys of the surface, the vertical
motion is converted to a time-varying electrical signal
which undergoes 12-bit A/D conversion. The result is
a roughness profile consisting of 4000 digitized points
that may be permanently stored on the magnetic disk.
The horizontal length of the profile is approximately
1.84 mm, and the point spacing is 0.46 um. The
horizontal resolution of the instrument is approxi-
mately 1 pum, limited by the high frequency
falloff of the stylus response function.

The ultimate vertical resolution of the stylus
instrument is approximately 0.3 nm over the length of
the stylus profile. The vertical resolution of the
digitized profile may also be limited by the
quantization increment of the 12-bit A/D converter,
which depends on the magnification scale of the stylus
instrument controller. For the rougher surfaces, the
controller was set at a low magnification; the smallest
quantization increment was approximately 1.2 nm.

Each surface was sampled with 10 stylus traces
evenly distributed over an area approximately 3
mm X 6 mm. Hence, the total amount of topography



information amounts to 40,000 digitized points for
each surface.

3.3 Specimens

A commercial set of four surface specimens [13] was
studied with both the stylus and DALLAS techniques.
Three of the specimens were specially machined to
produce highly two-dimensional roughness specimens;
that is, each surface has a fairly random roughness
profile in one direction and an essentially smooth
profile in the perpendicular direction. The . fourth
specimen was very smooth in all directions on the
surface. The two-dimensional nature of the three
rougher specimens was quite important.

The specimens were oriented in the DALLAS
apparatus so that the roughness direction was in the
plane of incidence of the light; therefore, essentially all
of the scattered light was in the plane of incidence as
well. This arrangement has two beneficial effects: 1)
all of the scattered light may be detected by a single
scan of the detectors without having to rotate the
yoke, and 2) the complex, vector electromagnetic
scattering problem reduces to a scalar problem
[14-16]. Therefore, the use of these specimens reduces
a three-dimensional problem that is both theoretically
and experimentally complex to a two-dimensional
problem without any approximation. The basic
approximations of the optical scattering theory may be
tested in a fairly straightforward way.

4, Theory

The formulas used to predict the angular scattering
distributions involve a basic scalar theory of light
scattering which has been investigated by Beckmann
and Spizzichino [14] as well as others [17,18]. The
theory assumes that a plane wave of uniform intensity
illuminates the specimen surface and that the electric
field on the surface and its normal derivative can be
expressed in terms of a surface reflection coefficient
[14] independent of the local surface topography. The
geometry of this scattering problem is shown in figure
4. The surface is assumed to be two dimensional, i.e.,
rough in the x direction and smooth in the y direction.
The incoming plane wave is represented by the wave
vector K; with angle of incidence @; with respect to
the normal vector n of the mean plane of the surface.
The functional form for the incident electric field E, is
given by exp(jK,*r). The scattered electric field is to be
evaluated for an angle 6, with corresponding outgoing
vector K. The vector r extends from some nearby
origin O to a point on the surface.

Figure 4-Schematic diagram of the scatterirlg geometry showing the
incoming plane wave with wave vector K, and angle of incidence
9, and an outgoing wave vector K, with scattering angle 0. r is
the vector from the origin 0 to the point under consideration.
(Vector symbols are arrowless [and bold-faced] in the text; arrows
are used with such symbols in the caption to match the arrowed
symbols of the figure.)

With the foregoing considerations and assumptions,
the scattered electric field E can be calculated as a
function of scattering angle 6, in the Fraunhofer zone
of the scattered radiation field. It is given by the phase
integral over the surface profile z(x):

(14cos(0-6)) (*

E(es)= Co COSG,“*‘ coses 0

eVrdx=C, F, (1)

where V=K-K, L is the length of the illuminated
region along the x direction, and r=xi+z(x)k. The
vectors i and k are unit vectors in the x and z
directions, respectively, and r contains all of the
information concerning the surface profile, and in

detail,
Ver=V _x+V,z

=27/A\[(sin6;+sinf )x +(cosd;+cosf)z(x)].  (2)

The sign convention here is such that 6,=-0, in the
specular direction. C, is a quantity which depends on
a number of factors such as 6, and E, but is
independent of 6, The quantity F contains all of the
information concerning the shape of the angular
scattering distribution.

The plan of the experiment is as follows: measure a
surface profile z(x) point by point, then substitute this
profile into the integral, eq (1), to calculate a
theoretical angular scattering distribution. This
distribution may be compared with the one measured
in the DALLAS apparatus for the same surface. In
this way the adequacy of the scattering theory can be
tested. If the theory is inadequate, then one can
remove the various approximations one by one that



have entered into it and perform the calculation with a
more elaborate integral.

5. Experimental Results

5.1 Optical Scattering

A typical set of angular distribution measurements
for one of the four surfaces is shown in figure 5. For
all of the surfaces the angle of incidence (AI) was
+30° with respect to the mean surface normal. We
assumed that the mean plane of the surface was the
one that gave rise to the specular beam in the angular
distribution. This consideration enables one to
determine the angle of incidence and the angles of
scattering with respect to the mean surface normal in
eq (1) if the angle of incidence and scattering angles in
the laboratory coordinate system are known. Figure 5
shows pairs of distributions for both +30° and -30°AlL
The difference between the members of a pair is a
rotation of the specimen of 180° about the normal. The
deep holes in the distributions occur at the

shadows the detector array from the scattered light.
The close match between the members of each pair
suggests that there is very little directionality to the
roughness peaks and valleys and that the surface is
well aligned in the instrument. Two pairs of
distributions like these were taken for each of the four
specimens.

Distributions for the four specimens are shown in
figure 6. These were all taken with an angle of
incidence of +30°. The values given for roughness
average R, were calculated from the stylus data (sec.
3.2). The roughness average is defined as the average
deviation of the profile about the mean line [19]. There
are obvious changes in these distributions as the
roughness increases. The AD for the smoothest
surface has a strong specular beam at 6,=-30° and
very little scattered light. For R,=0.20 pm, the
specular beam appears to have vanished but the
distribution still peaks strongly at the specular angle.
The results for the two roughest surfaces differ
significantly from the first two but are quite similar to
each another. This is to be expected since at high
roughness values (R,Z\), the effect on the distribution

backscattering angle where the mirror M2, which due to increasing roughness should approach
directs the incident light towards the surface, also saturation.
PTB Specimen, 0.20 p.m R,
10
3 Al = +30° Al = —-30°
o d) = oo P (b = 00 —_
I b = 180°--- b = 180°---
1e R R
. - Figure 5-Four angular scattering
2 1 = distributions for a commercial
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3 - sured R, was 0.20 um. For
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5.2 Stylus

Portions of the stylus traces taken for each specimen
are shown in figure 7. The traces were measured
without any electronic long-wavelength cutoff, and
the profiles are thus undistorted except for the high-
frequency cutoff of the instrument and convolution of
the profile with the stylus tip, which has a measured
width of less than 1 pum.

The quoted R, values were calculated as the
average deviation of the profile around a least squares
straight line. For this calculation, the 1.84 mm trace
length was not divided into shorter sampling lengths
as is often done in surface metrology. Hence the R,
values include effects due to spatial wavelengths
limited only by the trace itself.

The three rough specimens were manufactured so
that the 2-D “random” roughness pattern repeats
itself. This is not evident in the profiles since the
periods of the patterns are 1.3, 4, and 4 mm,
respectively. Such a periodicity gives rise to very
closely spaced diffraction peaks in the angular
distribution, but this structure is not resolved by the
1.5° angular resolution of the detectors. Therefore, the
long periodic structure of the surface does not
significantly affect the measured angular distributions.

-20 0 20
Scattering Angle

6. Analysis

The least squares straight line was subtracted from
the stored profile data from the stylus instrument to
yield a new digitized profile z(x). It was assumed that
the least squares line was equivalent to the x-direction
of integration in eq (1) and lay in the mean plane that
gave rise to the specular beam in the optical
experiment.

The profile data z(x) were substituted into eq (1)
and the value for the relative field strength F was
calculated for each angle 6. It was not necessary to
determine the constant C, to determine the shape of
the scattering distribution. The value of |F|* was
calculated to derive a quantity proportional to light
intensity. This quantity |F|*> was then averaged in two
ways to develop good statistics in the result:

Speckle Average. Figure 8 shows a close-up view of a
segment of the angular distribution projected on the
wall of the laboratory. The distribution consists of a
complex pattern of fine speckles [9] that vary greatly
in intensity from one point to the next. In our
apparatus, the average size of the speckles is roughly
0.1 mm or 0.04° [20] at the front surfaces of the
detector lenses. The lenses themselves span an angle of
1.5° (about 40% of the length of figure 8); therefore,
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Figure 7-Stylus profiles for the specimens which were studied by
the angular scattering measurements shown in figure 6. Note the
differences in the vertical scales.

each detector averages the intensity of a large number
of speckles. A single calculation of |F|? from eq (1)
would only yield the intensity of a single point. Hence
for each detector angle 6,, it is necessary to average
over several closely spaced angles to derive reasonable
statistics for the overall pattern. In the present
experiment, we used seven angles in the plane of
incidence separated from one another by 0.05° and
centered about the nominal angle 0,

Profile Average. The intensity distributions resulting
from the speckle average were then averaged over 10
surface profiles in order to achieve some measure of
area average which simulates the area averaging of the
light scattering approach. In the case of the 1.6 um R,
surface, only nine surface profiles were used because
we subsequently discovered that one of the profiles
had anomalies in the data in several places. To
improve the statistics for this case, nine speckle values
were calculated instead of seven.

10

Figure 8-A segment of the
angular distribution projected
on the wall of the laboratory.
The specimen had R,=0.20
pm. The photograph spans an
angle of about 3.5° from top to
bottom. The fine speckle struc-
ture is clearly shown.

As a result of the averaging procedure, the relative
intensity calculated for each value of 6, is an average
of 70 integrals represented by eq (1) and takes
approximately 9 hours on a Perkin Elmer 3230
minicomputer. The resulting distributions are shown
by the dotted lines in figures 9-12 and are compared
with the measured angular distributions (solid lines).
The phase integral calculations successfully reproduce
the changes in the experimental distributions from one
surface to the next. The specular beam dominates the
pattern for the smoothest surface in figure 9. Both the
theory and experiment show the same amount of sharp
curvature near the specular direction in figure 10 and
the same rounded structure in figures 11 and 12. The
major difference between the model and the data is
that in all cases, the theoretical distribution falls below
the experimental one on the wings. The ratios between
the curves are as high as an order of magnitude at
some places. Nevertheless, it is gratifying that for
these regimes of roughness, the simplified theory can
predict much about the distributions.

7. Discussion

7.1 Limitations in the Present Work

A large number of approximations has entered into
the simplified theory of eq (1). Improvements to the
preliminary analysis will involve removing each of
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these approximations and observing how the wavelengths between 0.4 and 1.5 um that were not

agreement with the data is affected. We outline some
of these possibilities below in terms of one
experimental limitation and three model limitations:

1) It is possible that the stylus profiles should be
taken with better horizontal resolution, i.e., there may
be structures in the true surface profile with spatial

sufficiently resolved by the stylus instrument with its
high spatial- frequency cutoff of 1 pm. These
structures may contribute significantly to the optical
scattering. In fact, they would tend to increase the
scattering on the outer wings, since short spatial
wavelengths scatter light into large angles.

11
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2) Equation (1) is the result of an integration by
parts [21). It neglects an additive contribution from the
end points, 0 and L. This approximation seems valid
provided the length L is much greater than A, but
perhaps the approximation fails at low scattering
intensities, where destructive interference due to phase

cancellation effects in the scattering pattern is very
high.

3) The preliminary analysis neglects any con-
tribution from shadowing. It assumes that every
point on the surface profile is illuminated with uniform
intensity and contributes to the scattering at every

12



angle 6, However, it is likely that at grazing
scattering angles, the outgoing wave from certain
valleys is blocked by the peaks, and it is also possible
that some of these valleys are shadowed from the
incoming beam as well. The former effect probably
tends to reduce the radiation scattered into the wings
of the distribution, whereas the latter probably
broadens the angular distribution by adding a degree
of amplitude modulation to the already phase
modulated outgoing wave.

4) It has been assumed in eq (1) that the electric
field quantities on the surface are not functions of the
local surface topography. This assumption implies
several other assumptions, for example, that the
reflection coefficient is not a function of either local
slope or local curvature and that the electric field at
each point on the surface is not affected by scattering
from other points. All of these simplifications seem to
be good ones for metallic surfaces where the reflection
coefficients are fairly high, the surface slopes and
curvatures small, and the significant roughness
wavelengths much greater than A. If some of the
approximations were invalid, that might result in
significant polarization effects in the angular scattering
distributions. We have done experiments with linearly
polarized light on the 0.59 and 0.20 pwm surfaces and
have found no significant differences between the
angular distributions for s- and p-polarized incident
beams, further suggesting that the simple theory may
be valid for these surfaces. However, in view of the
current differences between data and calculation, the
breakdown of these simplifications and assumptions
must be more carefully investigated, and more
rigorous theories of electromagnetic scattering [22-23]
should be applied to the roughness regime studied
here.

7.2 Previous Work

Our experiment is a direct test of the Beckmann-
Spizzichino optical scattering theory for engineering
surfaces where the roughness heights are the same
order of magnitude as the wavelength of light. With
the capabilities for measuring angular scattering
distributions and storing and analyzing surface
profiles, we have all the components for determining
the level of complexity needed for a valid description
of the optical scattering from these surfaces. Several
previous studies on engineering surfaces [24-27] have
correlated optical scattering measurements with
roughness parameters such as R, or the rms roughness
R, [19] obtained from stylus instruments, but they have
not investigated the effects of the surface profiles
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directly. Chandley [28] and Thwaite [29] took a middle
approach by comparing optical results with statistical
functions generated from stylus profiles. Chandley
compared the autocorrelation functions predicted
from optical scattering distributions with those
measured by stylus; Thwaite compared the power
spectral densities calculated from stylus profiles with
optical scattering distributions directly. However,
both approaches involved theoretical assumptions that
are not needed in the present work.

Experiments involving measured and calculated
scattering distributions have been done for optical
surfaces by Elson, Bennett, and Rahn [30,31]. Their
work differs from ours in that the theory they used is
more straightforward. Since the rms roughness R, was
much less than A in the optical regime, first order
Rayleigh theory could be used to analyze the optical
scattering effects due to surface roughness. On the
other hand, their experiments posed different kinds of
difficulties from the present work. Optical surfaces
generally produce low-intensity angular distributions
that are strongly peaked in the forward direction near
the specular beam, so the angular resolution and signal
resolution requirements for their apparatus were high.
Despite these differences, the agreement between
theory and experiment for the previous studies is
comparable to that observed here.

7.3 Future Directions

Our work is a preliminary step in the study of
engineering surfaces by optical scattering. Once this
direct scattering approach produces agreement with
experiments for ideal, two-dimensional surfaces, its
validity must be tested for real, anisotropic surfaces
produced by many kinds of processes such as milling,
grinding, and lapping. For these surfaces, there is a
certain amount of light scattered slightly out of the
plane of incidence, so the geometrical problem is only
approximately two-dimensional. Highly isotropic
surfaces such as those produced by shot blasting or
electron-discharge machining must also be studied. In
those cases, the scattering problem is truly three-
dimensional.

Finally, in order to use the optical scattering
techiques for characterizing surfaces, comparisons
with direct scattering methods are not sufficient. The
inverse scattering problem must be solved adequately
so that surface parameters such as R, may be derived
in a reliable way solely from optical scattering data.
This is where the speed and resulting economic
benefits of on-line optical methods will be realized.



8. Appendix: Experimental Notes
8.1 Calibration

The calibration of the 87 detectors is an important
part of the operation of the apparatus. The relative
sensitivity can vary by as much as a factor of 3 from
one detector to the next. Therefore, at the beginning
of each day’s rum, the system is calibrated in the
following way. The specimen table is dropped below
the center of the yoke, and a fixture with a flat mirror
is inserted into the rotating mirror assembly. The
surface of this mirror is located at the center of the
yoke, but the mirror rotates with the M1, M2
assembly. This setup allows a laser beam of constant
intensity to illuminate each of the detectors in turn as
the mirror assembly is rotated. The 87 signals from the
detector array are collected in this way and stored as a
set of normalization data. The signals collected in the
subsequent data runs are then normalized by dividing
each detector reading by the corresponding
normalization datum. The relative sensitivities of the
detectors, when normalized in this way, are equal to
within approximately *+2% (1 standard deviation), a
figure which includes the variation in sensitivity from
one day to another.

In addition to the variation of sensitivity among the
detector channels, there is an offset voltage signal at

zero light level, which is constant with time but which
varies from one detector to the next. Since the
magnitudes of these offset signals are between 20 and
100 mV, and measurements are made which may be as
small as 10 pV, these light-off signals must be
subtracted from those measured with the light on.
Therefore, each calibration run or data run actually
consists of taking the difference between two scans of
the detectors, a background scan measured with the
laser beam diverted by a shutter, and a signal scan
measured with the laser beam turned on.

8.2 Stray Light

A certain amount of stray light enters the detectors
due to reflection from the ends of the optical fibers
themselves. Approximately 1% of the light entering
each lens is reflected from the fiber located at the
focal point and refocused back to the surface. For a
sharply peaked angular distribution, the effect
influences the signals in the backscattered direction as
shown in figure 13. The dotted line was taken under
conditions which allow the light reflected from the
detectors near -30°, the specular direction, to
propagate to the detectors located near the
backscattering angle of +30°. The solid line was taken
by placing a dark mask to block the detectors near

PTB Specimen, 0.20 um Ra, Al = +30°
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-30° as those near +30° were being scanned. The
solid line represents a true angular distribution
whereas the dotted line includes a shoulder around
+30° due to the reflected stray light. All of the
experimental distributions shown in figures 9-12 were
measured with the masking approach. The difference
between the curves of figure 13 is approximately a
mirror image of the angular distribution itself but
lower in intensity by about 2 1/2 orders of magnitude.

It is important to note that this effect is significant
only when the yoke is positioned vertically, when the
angular distribution is sharply peaked, and when the
surface is highly two-dimensional, so that most of the
stray light is scattered by the surface back into the
plane of incidence again.

In future experiments, we plan to model the effect
of this reflected light on the detector signals and
perform the appropriate subtractive massage on the
measured angular distributions to correct for it.

The authors are grateful to K. M. Kunz, D.
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Morris for assistance in the preparation of the
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Introduction

Small angle neutron scattering (SANS) techniques
are used to study microstructural phenomena in the
range of 1 to 10* nm in size. Since they cover a wide
range of sizes, these techniques are particularly useful
in studies of ceramic processing and distributed
damage in ceramics. While many metal and alloy
systems have used SANS techniques, few experiments
have been published on ceramic materials. This is not
surprising considering the difficulties inherent in
analyzing SANS data on these materials. Often
ceramics have several microstructural components
such as residual voids from the sintering process,
inclusions or impurities from starting materials, second
phases, and microcracks or cavities from temperature
and/or pressure treatments, as well as dislocations
present in the material. All these effects produce small
angle neutron scattering. It is important to either
eliminate all effects except the one of interest or to
identify the effects through complementary studies
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that use other techniques such as electronic or optical
microscopy. While these complementary techniques
can identify defects, voids, and second phases, SANS
can quantify these effects throughout the bulk of the
materials in a nondestructive way due to the general
nature of neutrons.

Neutrons are an excellent nondestructive probe of
microstructure because the thermal neutron energies
are very low and neutrons are not absorbed in most
materials. Since the neutrons primarily interact with
the nucleus of the atoms, the neutron beam is highly
penetrating without disturbing the sample. This allows
us to examine the bulk of the material whereas x-ray
and other techniques are more sensitive to surface
phenomena. One strength of neutron scattering is its
dependence on the chemical elements present in the
material through a quantity called the coherent
scattering length, » [1]'. Since b values vary in an
unsystematic way from one element to another,
differences between elements with similar atomic
numbers can be detected, e.g., aluminum and
magnesium or iron and manganese (see table 1).

Magnetic and isotope behavior can be studied with
SANS techniques. Neutrons have a magnetic moment
which interacts with the electrons in the material. The
magnetic and structural properties of many ferrites
and rare earth garnets have been examined with
neutron scattering. Isotope studies involving hydrogen

! Numbers in brackets indicate references at the end of this paper.



Table 1. Bound values of coherent scattering length, incoherent scattering cross-section and absorption cross-section for

elements and isotopes (from Ref. {1])

Element Incoherent Absorption
Atomic or Nucl. Scattering length® scattering cross-section cross section for A=1.8 A
number  isotope spin 5(107'? cm) O ne(barn) 0 s(barn)
1 'H 172 -0.3740 (1) 79.7 0.33
H=D 1 0.6674 (6) 2.0 0.00046
‘H=T 172 0.50 (3)
2 *He 172 0.62 1.2 5500
‘He 0 0.30 (2) 0 <0.007
3 Li -0.203 (5) 0.7 71
°Li 1 0.18+0.025¢ 945
Li 3/2 -0.233 0.7
4 Be 372 0.78 (4) 0.005 (1) 0.010
5 B 0.535 (6)+0.021; 0.7 (2) 755
B 3 0.144+0.11¢ 3813
B 32 0.60
6 C, 0.66484 (13) <0.018 0.0033
¢ 0 0.665 0
B¢ 172 0.60 1.0
7 N 0.936 (2) 0.46 (12) 1.88
UN 1 0.94
BN 172 0.65
8 0 0.5803 (5) €0.015 <0.0002
150 0 0.580 0
o 5/2 0.578
] 0 0.600 0
9 F 172 0.566 (2) 0.0004 <0.01
10 Ne 0.46 <0.11 2.8
11 Na 372 0.363 (2) 1.75 (3) 0.505
12 Mg 0.5375 (4)° 0.04 (3) 0.063
Mg 0 0.55 0
BMg 5/2 0.36
Mg 0 0.49 0
13 Al 5/2 0.3446 (5) <0.01 0.230
14 Si 0.41491 (10) <0.017 0.16
15 P 172 0.513 (1) <0.23 0.2
16 S 0.2847 (1) 0.012 (4) 0.52
17 Cl 0.95792 (8) 5.9 (3) 33.6
e 3/2 1.18
1 3/2 0.26
18 A 0.18 (2) 0.27 (12) 0.66
A 0 2.43 0
19 K 0.371 (2) 0.38 (11) 2.07
K 3/2 0.37
20 Ca 0.490 (3) <0.06 0.46
“Ca 0 0.49 0
“Ca 0 0.18 0
21 Sc 772 1.215 (13) 0.446 (23) 24

and deuterium are also possible because the neutron
scattering behavior of these elements is very different.
This capability is often used in biological or polymer
research.

This paper will discuss several NBS experiments on
ceramic materials with a greater emphasis on SANS
techniques rather than the actual pertinent values
obtained. The main intention here is to emphasize the
advantages and limitations of these techniques and to
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spark interest in further SANS ceramic research
studies. We will divide the measurement discussion
into three parts, as follows: 1) the diffraction limit
which includes small particles or defects in the range
of 1 to 100 nm, 2) the multiple refraction limit which
includes large particles and defects, usually 20 um or
greater, and 3) the beam broadening region which lies
between these two limits. However, preceding this
discussion are two sections, one on the SANS



Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering length® scattering cross-section cross section for A=1.8 A
number isotope spin b(107' cm) o, (barn) o ,s(barn)
22 Ti -0.337 (2) 2,71 (22) 5.8
“Ti 0 0.48 0
i 5/2 0.33
®Ti 0 -0.58 0
®Ti 7/2 0.08
*Ti 0 0.55 0
23 v -0.0385 (1) 4.97 (5) 4.98
Sy 7/2 -0.038
24 Cr 0.3532 (10) 1.90 (3) 3.1
2Cr 0 0.490 0
25 Mn 5/2 -0.373 (2) 0.6 (2) 13.2
26 Fe 0.954 (6) 0.22 (16) 2.53
*Fe 0 0.42 0
Fe 0 1.01 0
Fe 172 0.23
Fe 0 1.54 (68)
27 Co 7/2 0.278 (4) 5.22 (8) 37
28 Ni 1.03 () 5.0 (6) 4.8
Ni 0 1.44 0
“ONi 0 0.28 0
°INi 3/2 0.76
Ni 0 -0.87 0
#Ni 0 -0.037 0
29 Cu 0.7689 (6) 0.51 (4) 3.77
“Cu 372 0.67
BCu 3/2 1.11
30 Zn 0.5686 (3) 0.08 (1) 1.10
$Zn 0 0.55 0
%Zn 0 0.63 0
%Zn 0 0.67 0
31 Ga 0.72 (1) <0.5 2.80
32 Ge 0.81858 (36) <0.2 2.45
33 As 3/2 0.673 (2) <1.6 4.3
34 Se 0.795 (4) 0.27 12.3
35 Br 0.677 (2) <0.5 6.7
36 Kr 0.791 (15) 31
37 Rb 0.708 (2) 0.4 0.7
¥Rb 5/2 0.83
38 Sr 0.69 (1) 4.0 1.21
39 Y 172 0.775 (2) 0.15(1) 1.31
40 Zr 0.70 (1) <0.3 0.18
41 Nb 9/2 0.7050 (3) 0.0063 (6) 1.15
42 Mo 0.695 (7) <0.6 2.7
43 *Tc 9/2 0.68 (3) 122
44 Ru 0.721 (7) <0.1 2.56
45 Rh 172 0.588 (4) 1.2 156
46 Pd 0.60 0.093 (9) 8.0

however, a schemati¢ of the major components is
shown in figure 1. The characteristics of the SANS
instrument are given in table 2. The wavelength, A,
can be varied from 0.4 to 1.0 nm by selecting the
appropriate speed of a rotating helical-channel
velocity selector. This is particularly important in
beam broadening experiments because the wavelength

instrument at NBS and the other on the theory, that
will provide some background.

Instrument

The SANS instrument at the National Bureau of
Standards is described in detail elsewhere [2];
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Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering length® scattering cross-section cross section for A=1.8 A
number isotope spin b(10™2 cm) o;,(barn) o s(barn)
47 Ag 0.602 (2) 0.49 (4) 63
Ag 1/2 0.83
®Ag 1/2 0.43
48 cd 0.37+0.16i 2450
Bcd 172 -1.541.2; 20000
49 In 0.408 (4) 196
50 Sn 0.6223 (4) 0.022 (5) 0.625
16gn 0 0.58 0
7gp 1/2 0.64
188n 0 0.58 0
1198n 1/2 0.60
12080 0 0.64 0
1226n 0 0.55 0
1248n 0 0.59 0
51 Sb 0.5641 (12) 0.17 (12) 5.7
52 Te 0.543 (4) 0.6 (4) 4.7
1201e 0 0.52 0
83T 1/2 0.57
1247e 0 0.55 0
e ) 172 0.56
53 I 5/2 0.528 (2) ~0 7.0
54 Xe 0.488 (3) 74
35Xe 2.7x10°
55 Cs /2 0.542 (2) 4.6 29
56 Ba 0.528 (5) 2.5 1.2
57 La 0.827 (5) 1.87 (17) 9.3
B 12 0.83
58 Ce 0.483 (4) ~0 0.77
0ce 0 0.47 0
2Ce 0 0.45 0
59 Pr 5/2 0.445 (5) 1.6 11.6
60 Nd 0.780 (7) 11 (2) 46
MINd 0 0.77 0
Nd 0 0.28 0
1Nd 0 0.87 0
62 Sm 5600
9Sm /2 -1.9+4.5i 41000
528m 0 -0.5 0 210
1515 m 0 0.96 0 5.5
63 Eu 0.68 4300
8By 5/2 450
64 Gd 1.5 - 49000
¥1Gd 3/2 4.34-4f ~254000
10Gd 0 0.91 0 0.77
65 Tb 3/2 0.738 (3) 46

dependency of the neutron scattering is a necessary
part of the analysis. Longer wavelengths are also
useful in diffraction measurements where larger sizes
(>0.5 nm) of particles or voids are being examined
and when multiple Bragg scattering from the crystal
structure of the material is to be avoided. A cold
source is important in SANS facilities because
measurements can be obtained at higher wavelengths
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in a reasonable time interval. The function of a cold
source is to lower the neutron thermal equilibrium
temperature in the reactor, which shifts the peak
intensity to higher wavelengths. Therefore A values of
1.5 to 1.8 nm can be used routinely and data can be
collected at A=1.0 nm more quickly. The SANS
facility at NBS is adding a cold source and will
increase the power of the reactor to 20 MW (June



Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering length® scattering cross-section cross section for A=1.8 A
number  isotope spin 5(107" cm) 0, o(barn) O pi(barn)
66 Dy 1.71 (3) 950
19Dy 0 0.67 0 55
lpy 5/2 1.03 585
92Dy 0 -0.14 0 200
18Dy 5/2 0.50 140
%Dy 0 4.94 0 2300
67 Ho 772 0.85 (2) 4 65
68 Er 0.803 (3) 7 173
69 Tm 172 0.705 (5) 127
70 Yb 1.262 (12) 37
71 Lu 0.73 (2) 112
72 Hf 0.777 (14) 105
73 Ta 0.691 (7) 0.020 (4) 21
74 w 0.477 (5) 1.86 (12) 19.2
182y 0 0.83 0
18w 172 0.43
184y 0 0.76 0
186w 0 -0.12 0
75 Re 0.92 86
76 Os 1.08 0.5 15.3
1880 0 0.78 0
1805 372 1.10
%05 0 1.14 0
19205 0 1.19 0
77 Ir 1.06 (2) 440
78 Pt 0.95 (3) 0.60 (4) 8.8
79 Au 3/2 0.763 (6) 0.36 (4 98.8
80 Hg 1.266 (2) 6 375
81 Tl 0.889 (2) 0.1 34
82 Pb 0.94003 (14) 0.0013 (5) 0.17
87 Bi 9/2 0.8495 (12) 0.0072 (6) 0.036
0.85256 (14)
90 Th 0 1.008 (4) 0 7.56
91 2ipa 1.3 200
92 8) 0.861 (4) 7.68
»y 1/2 0.98 694
2y 0 0.85 0 2.71
93 Np 1.06 170
9% Hpy 0.75 1026
0py 0 0.35 0 295
M2py 0 0.81 0
95 MAm 5/2 0.76
96 #Cm 0 0.7 0

2 Coherent scattering lengths for the eiements are mostly best values recommended by Koester (1977). Complex scattering lengths relate
to A=1 A. All entries without quoted errors are to be considered with caution as their accuracy is uncertain. Incoherent scattering cross

sections for nuclei with zero spin have been set equal to zero.

1984). Both of these additions will increase the
neutron flux at the sample significantly and will result
in shorter measurement times.

There are two types of collimating apertures which
define the beam direction and divergence. One type
consists of a pair of cadmium pin hole irises, one after
the velocity selector and another before the sample
chamber. The other collimation system is for higher
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resolution measurements and consists of a set of
channels in cadmium masks which effectively
converge the neutron beam to a point at the center of
the detector. The multiple sample chamber is
computer controlled and can be used under vacuum.
Single samples can be studied as a function of
temperature from 12 to 1600 K. Horizontal and
vertical field electromagnets are also available. Sample
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Figure 1-A diagram of the NBS small angle neutron scattering facility including computer capabilities (Ref. [2] is source).

Table 2, Characteristics of the SANS instrument at 10 MW reactor
power

Wavelength: Variable from 0.48 to 1.0 nm, AAN/A=0.25

Collimation: Single pair of circular irises or 7 to 9 channel
converging beam collimation

Minimum Q: 0.006 A™' at A=0.6 nm; 0.004 A" at A=0.9 nm

Q range: 0.004 A to 0.5 A™!

Sample size: 0.4 to 2.0 cm pin-hole collimation; 1.6 cm X 1.6
cm or 2.2 cm diameter—converging collimation
1-30 mm thickness (uniform)

10* to 2 10° n/cm*sec depending on slit sizes
and wavelength

64 cmXX 64 cm position sensitive counter with

88 mm? resolution

Flux at sample:

Detector:

sizes are usually 1.0 to 2.5 c¢m in diameter and 2 to 30
mm thick. Uniform thickness is essential for analyzing
the results. The scattered neutrons are detected on a
64 cmX 64 cm position-sensitive proportional counter
with a spatial resolution of 8 mm in each direction and
is divided into 128 columns and 128 rows. A dedicated
minicomputer processes the signals from the detector
and stores the data. The data are recorded on floppy
disks for archival storage and are transferred to a
larger computer for analysis, and they can be viewed

on an interactive color graphics terminal as well. The
angle between the incident beam and the scattered
beam is the scattering angle, ¢, (see fig. 2). The
magnitude of the scattering vector Q is (4m/A)sin €/2
which is approximated 27e/A in the small angle limit.

Theory

This section is a very brief discussion of some of the
theoretical considerations that are particularly
germane to ceramics applications of SANS. Excellent
reviews [3-5] of SANS formalism and practice exist
for the interested reader.

The nature of small angle scattering from a
monodisperse population of spherical particles or
voids is determined by the phase shift p that a plane
wave suffers in traversing a single particle;

p=(@4m/N)AnR, (¢))

where A is the neutron wavelength, R is the particle
radius, and
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Figure 2-A schematic diagram of key components used for the small angle scattering measurements.

An=AbN/21r, )

“is the index of refraction of the particle or void
relative to the matrix medium, which is assumed to be
homogeneous and thus, acting alone, to produce no
angular divergence in the neutron beam. In eq (2), Ab
is the relative scattering length density or contrast of
the particle (or void) with that of the matrix material:

Ab=% cellb i/ Vcell_b (3 )

matrix?

where the sum is over the coherent scattering lengths
b, of the material formula unit for a crystalline unit
cell, ¥, is the unit cell volume, and where b, is
defined by the analogous average for the matrix
material. Thus combining egs (1) and (2) the phase
shift parameter p can be written in the useful form

p=2AbRM, 4)

which shows the three independent factors on which
it depends: 1) material contrast Ab, 2) particle size 2R,
and, 3) neutron wavelength A.

In the limit of small phase shift, p< <1, single-
particle scattering is described by the Born
approximation, or equivalently, the Rayleigh-Gans
model, which in SANS is identified with small angle
diffraction. In this limit the neutron differential cross-
section—i.e., the relative probability for scattering into
angle € which is equal to 260—is exactly expressed as
the Fourier transform of the single-particle density
self-correlation function, which is sensitive to the
details of particle shape and size. The diffractive
regime theory and measurement are usually described
in terms of the scattering wavevector

Q=2me/A, &)
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which absorbs all of the A-dependence of the
scattering; in particular the width of the scattering in
the Q-representation is inversely proportional to
particle radius but independent of A, so that in the
angular representation, the root mean square, rms,
angular deviation of scattered neutrons is proportional
to A and is inversely proportional to the particle
radius. Moreover, as p approaches zero, the single-
particle fotal cross-section o,—i.e., the integral of the
differential cross-section over all angles—becomes
proportional to the particle geometrical cross-sectional
area multiplied by p® and thus also tends rapidly to
zero. As a result, the mean-free-path length

l=1/Do, (6)

where D is the number of scatterers per unit volume,
becomes much larger than sample dimensions—except
for very dense systems or for very thick samples. This
has two important (related) consequences: 1) the
relative probability for scattering becomes small so
that the observed intensity is the sum of an unscattered
“incident” beam, broadened only by instrumental
resolution, and a much weaker scattered beam which
contains the particle size and shape information; and 2)
incident neutrons effectively have only one opportuni-
ty to be scattered by individual particles while
traversing the sample so that the scattered component
of the observed neutron intensity is simply the N-fold
multiplication of the single-particle scattering from N
particles—i.e., contributions from multiple scattering
and coherent interparticle interference are negligible.
(We simply note here that interparticle interference
can be an important effect in small angle diffraction
from dense systems of scattering particles or voids.)
Typically, the diffractive regime is considered to
apply to particles of radius less than 0.1 pum, and
o=mR*%/2.



In the opposite limit, p> > 1, the scattering from a
single particle is well described by ray optics with
each particle refracting neutrons as a lens. In this
regime the rms angular deviation of the neutron beam
produced by a particle is independent of its size and
determined only by the relative index of refraction
which, recalling eq (2), is proportional to A%
Moreover, the total cross-section o approaches the
geometrical limit 2X cross-sectional area (o-=2wR?),
so that the mean-free-path length becomes comparable
to the average interparticle spacing. In probabilistic
terms every particle scatters, and as a result: 1) the
observed intensity is not separable into an unscattered
“incident-beam” and a weak, scattered part—in effect
the incident beam is broadened beyond instru-
mental resolution without “residual” scattering;
and 2) multiple scattering effects dominate this
“beam broadening” which. means that the particle
size influences the measurement indirectly—but
substantially—through its influence on the macro-
scopic configuration of scatterers (e.g., the mean
particle spacing for fixed volume fraction). Generally,
the refractive regime is reached by particles larger
than 10 pm.

For intermediate values of the phase shift, p~1, the
scattering is not well described in terms of either
limiting case or as a simple combination of diffractive
and refractive effects. A plot of o/7R? vs p in figure 3
suggests the effective extent of the intermediate or
“cross-over” p-regime connecting these extremal
behaviors. The diffractive regime is confined to the
immediate neighborhood of the origin while the
refractive asymptote, defined by the dotted line, is
approached only slowly for large p. In work described
elsewhere [6] we have developed a synthesis of a
general formal expression for the single-particle
scattering cross-section, for unrestricted p, as derived
by Weiss [7] with the multiple-scattering formalism of
Snyder and Scott [8], modified for the relevant *“pin-
hole” geometry of the typical SANS instrument. We
find that for p~1, the relevant regime for many
ceramics applications, the predicted neutron intensity
as a function of scattering angle is approximately
Gaussian, an informal characteristic of multiple-
scattering phenomena, with a standard deviation
estimated by Ae

Ae=[T/I(M)] €D ™

where T is the sample thickness, / is the mean-free-path
length as defined in eq (6), and ¢, is a measure of the
rms angular deviation produced by a single particle. In
eq (7) we have indicated the implicit wavelength
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Figure 3-The oscillatory variation of the total neutron cross-section
scattering o~ as a function of the phase shift p. In the multiple
refraction limit p=27R? (Ref. [7] is source).

dependence since a plot of measured Ae vs A is the
most effective means of determining the nature of
beam broadening. In this regime / is inversely
proportional to A* and ¢, is approximately linear in A
(the ¢, behavior thus suggesting the approach to the
single-particle diffractive limit), so that the overall
variation of Ae is approximately quadratic in A. A
similar expression applies to the refractive regime,
p>>1, where / becomes independent of A while ¢,
varies approximately as A% thus giving Ae a similar
wavelength dependence as for p~1 but one that arises
from a different “mechanism” and which depends in a
very different way on R. An application to experiment
is discussed below.

Experiment

Diffraction and beam broadening measurements are
quite different and are usually obtained in different
configurations of the SANS instrument. Diffraction
experiments probe for microstructural phenomena in
the range of 1 to 100 nm. The SANS detector is
usually located directly behind the sample so that the
incident beam is centered in the middle of the
detector. The experiment generally requires 6 to 12
hours and a beamstop is used to eliminate scattering
from the incident beam. Sample thickness (2 to 6 mm)
is kept small to minimize multiple scattering effects.
Absorption and incoherent neutron scattering should
be reduced for best results in most SANS experiments
with ceramic materials.

The beam broadening effect is wavelength (A)
dependent and the resulting widths are most sensitive
to A at A greater than 0.7 nm. Typical experiments
require only 3 minutes to 2 hours depending on A, the
void or particle size, density and thickness of the
sample and are similar to transmission measurements.
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It is important to determine the exact center of the
neutron scattering; therefore, the incident beam is set
off to one side of the detector without a beamstop.
This can be done without harming the detector
because the peak intensity is greatly reduced in the
broadened state. Cadmium foil can be used to reduce
the scattered beam intensity over the entire detector to
further ensure the safety of the detector; nevertheless,
care should be taken when obtaining data without a
beamstop. The samples should be measured at three
wavelengths or more for best results. Also thicker
samples, 5 to 30 mm, are desirable to increase the
number of scattering events.

Hydrogen and B or naturally occurring boron are
generally undesirable in elastic neutron scattering
experiments so that deuterium and B! are often
substituted for these elements respectively. B'® absorbs
neutrons and can be used to stop the chain reaction in
nuclear reactors. Therefore SANS measurements of
boron containing ceramic materials should have less
than 10% B and be 3 mm or less in thickness. If these
conditions are not possible then the materials can be
made with B'' which is relatively inexpensive and easy
to obtain. Hydrogen has a large incoherent scattering
component that reduces the signal-to-noise ratio in the
data. Ceramic binders containing hydrogen and
ceramics containing water are difficult to measure.
Usually heavy water (D,0) can be used if water is
required in the sample. The coherent scattering
lengths (b), incoherent scattering cross-sections, and
absorption cross-section values for the elements and
isotopes can be found in table 1, taken from Kostorz
[1]. It is worthwhile to avoid elements or isotopes with
high neutron absorption or high incoherent scattering
cross-section values.

Diffraction Region

Most SANS experiments are in the diffraction
region and in ceramics are concerned with
inhomogeneities such as voids, cavities, microcracks,
precipitates, sintered porosity, inclusions, nucleation,
and growth of second phases. In principle it is possible
to determine quantitatively particle size, shape, size
distribution, surface area and other microstructural
values. Examples of SANS experiments with ceramic
materials include the following: formation and growth
of heterogeneities in glass by A. W. Wright [9], creep
cavitation in sintered alumina by R. A. Page and
James Lankford [10], growth and coarsening of pure
and doped Zr0, by A. F. Wright, S. Nun and N. H.
Brett [11], microcracks in sintered YCrO; by E. D.
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Case and C. Glinka [12], and Fe and W inclusions in
hot pressed Si;N, by K. Hardman-Rhyne, N. F. Berk
and N. Tighe [13]. The results of the two last-named
works will be discussed briefly.

It is preferable to have a two-component system
such as the matrix material and precipitates or voids.
One way to avoid multiple component systems is to
run a control sample which was done in the YCr0,
microcrack experiment [12]. YCr0, is a material which
is sintered around 1750 °C, thereby establishing its
microstructure (porosity, grain size, etc.) but which
undergoes an apparent phase transition around
1100 °C. Thus if the material is quenched from above
1100 °C, microcracks as well as pores are present in
the final material. However if the material is annealed
at 1050 °C the microcracks can heal and only the
pores remain. Thus by subtracting the neutron
scattering data of a healed YCr0, sample from that of
a microcracked sample, a third scattering distribution,
due only to the microcracks in the material called
Ioer can be obtained. These data are analyzed to
determine several microstructural parameters.

Both SANS and elasticity measurements were
collected on these samples which allowed the mean
crack radius and crack number density to be
calculated. The total surface area of the microcracks
was estimated by using high Q data which was
normalized to the scattering from water. Figure 4
shows the logarithmic function of Ipe versus the
scattering vector Q. The solid line is a Porod [14]
functional fit which describes the data at large
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Figure 4-Open circles are the net scattering due to microcracks
from a 7 mm thick specimen of YCr0, plotted on a logarithmic
scale versus the scattering vector Q. The curve is a least-square fit
of a Porod law (Ref. [12] is source).



Q(Q>0.03 A™") and can be expressed in the following
form:

dS _ 2m@n S
Ia 20 = v Q' ®

where d2/dQ is the macroscopic cross-section, V the
sample volume seen by the neutron beam and S the
total surface area of the scattering centers.

Because the Porod function does not apply to low
Q region, other functional forms of the scattering
cross-section must be used. For sharp-edged, randomly
oriented scattering centers of any given geometry, a
Guinier [15] function can be used at small Q values;

az

—_—~

g0 ~ (A6 ¥} exp (-R7QY3)

€)

where V), is the volume of the particle (or scattering
center) and R is the particle’s radius of gyration with
respect to its center of gravity. However a better
functional fit to the data can be obtained by assuming
that the scattering from microcracks is modeled after
randomly oriented thin disks [14] of thickness 2H,
diameter 2a;

2

dz
o = Q2 €xXp

aq

VAN H(Ab)
v

(-Q’H/3) (10)

where N, is the number of microcracks and
QH< 1< <Qa. This low Q fit to the data (J5gp) can
be seen in figure 5. Various microcrack parameters
have been calculated and agree well with other similar
parameters in the literature [12] and are as follows:
crack number density (4.7X 10* cm™), surface area (1.5
cmX 10° cm), crack aspect ratio (1.5 to 3.5%107),
volume fraction (2.6X107), and crack opening
displacement (250 A). The mean crack radius is 5.7
pm which corresponds well with the measured grain
size of 6 um and is consistent with a model of
localized stress induced microcracks.

Although optical and electron microscopy can
identify small defects (<10 pm) in advanced ceramic
materials, SANS can quantify the size, shape and
distribution of these defects in the bulk of the material.
Hot pressed, Mg0 doped Si;N, is an example of a
complementary study with SANS and transmission
electron microscopy, TEM. TEM studies of this
material clearly showed small, approximately spherical
inclusions in Si;,N, that were identified as Fe and W.
There was no evidence of pores, microcracks or
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Figure 5-The data points are the low Q scattering from microcracks
in a 7 mm thick specimen of YCr0,. The curve is a least-squares
fit to the data of the scattering function for randomly oriented
thin disks of thickness 2H (Ref. [12] is source).

microvoids from the TEM observations, but the
sample had not been temperature treated where voids
are more likely to appear.

Pores larger than 90 nm can be detected by
examining transmission data collected at two or more
wavelengths remembering that the higher wavelengths
are more sensitive to porosity effects. Focussing
collimation was used to examine the wavelength
dependency of the neutron scattering as shown in
figure 6 and no wavelength-dependent beam
broadening was observed. This is consistent with
observations from TEM and other characterization
methods which suggest that this sample of Si,N, is
fully dense with little or no porosity. Therefore we
assume the SANS data reflect information relevant to
the Fe and W inclusions that are present.

The small angle neutron scattering of the inclusions
at A=09 nm is plotted as exponentially spaced
intensity contour lines for the two dimensional
detector (see fig. 7). There is a beamstop located in the
center of the detector (solid circle) where the intensity
is greatest and decreases as the distance away from the
center increases. The intensity of the scattering is
usually expressed as a function of Q, given in units of
inverse angstroms (10 A=1 nm and 1 A"'=10 nm™).
Background and transmission corrections must be
made to the raw data. Since the contour plot (fig. 7)
indicates the scattering is isotropic we have circularly
averaged the corrected data and plotted logarithm of
intensity versus Q for the Fe and W inclusions in Si;N,
(see fig. 8).
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Figure 6-Comparison of direct beam scattering (blank sample) with the scattering from the Si,N, sample at several wavelengths.

Figure 7-Exponentially spaced intensity contour plots from the two-
dimensional SANS detector of the Si;N, sample at A=0.9 nm.

Most SANS analyses include one or both regions
indicated in figure 8. Often the intermediate region
will be included in one of these regions or treated
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Figure 8-Logarithm of neutron scattering intensity of Fe and W
inclusions in Si;N, versus scattering vector, Q, in reciprocal
angstroms. The two regions (1 and 2) denote the Guinier and
Porod regions, respectively.

separately as was the case in the thin disk model for
YCr0, microcracks. Region 1, shown in figure 8 and
expanded in figure 9, is the Guinier region where the
logarithm of the intensity has a Q* behavior. A
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Figure 9-Plot of the Guinier fit (solid line) to the data (squares) at
A=0.76 nm.

Guinier fit (solid line in fig. 9) to the data (squares) at
A=0.76 nm yields a radius of gyration (from eq (9)) of
18.6 nm which is related to the average radius of the
Fe and W inclusions. If we assume the inclusions are
monodispersed and spherical in shape, R;=(3/5)""? R,
so that the average particle radius is 24.0 nm. In this
scattering region the neutron intensity is limited by the
larger dimensions of the scattering particles. The
Guinier approximation is valid over a range of
QuaxRs<1.2. In our case the maximum Q is 0.017 A
and QuaxRs~3 which extends outside the Guinier
approximation range although the logarithm of the
intensity has Q? behavior in this region.

Region 2 in figure 8 is called the Porod region and
has a Q* dependence. The Porod region is more
sensitive to smaller dimensions of the scattering
centers and results in a characteristic Porod length
which measures a surface to volume ratio if absolute
intensities can be determined. Since the Porod region
is valid for high Q wvalues only, other similar
functional forms have been used to extend the Porod
region to lower Q values. One such form is the Debye
et al. model [16] which assumes scattering from a two
phase material. The particles or voids can be random
in size, shape, and distribution throughout the
material. The scattering cross-section from this model
is given by

dZ 8w Va’(Ab) 1
Q= (+Q) an
The correlation length a is equal to Porod’s
inhomogeneity length [14], [,=4V/S where V/S is the
volume to surface ratio of the total interface

separating the two phases. Thus, for a population of
spheroidal particles @ is a characteristic of average
particle size (¢=4/3 Ry). A Debye et al. fit (solid line)
to the data (squares) at A=0.55 nm is shown in figure
10. The correlation length a for the Fe and W
inclusions in SiyN, is 21.2 nm. A complicating factor in
this study is the wide distribution of inclusion sizes
and the difference in Ab of Fe and W.
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Figure 10-Plot of a Debye fit (solid line) to the data (squares) at
A=0.55 nm.

Further SANS diffraction experiments of distributed
damage due to stress and temperature are expected as
this technique becomes familiar in ceramic research.
These results, coupled with failure tests, optical and
electron microscopy, can help in understanding and
improving the structural reliability of advanced
ceramic materials.

Multiple Refraction Region

A few experiments have been published on multiple
refraction effects in nonmagnetic materials, yet it
remains unclear if these effects have been observed.
Nevertheless, two papers discuss these phenomena in
some detail. Weiss [7] studied the neutron beam
broadening effect of several materials including
bismuth, magnesium, and carbon black. Moreover he
demonstrated the full width at half maximum as a
function of scattering angle, called Ae¢, from neutron
beam broadening depends on 72, A%, Ab, and s,
where T is the thickness of the sample and s is a
parameter describing the particle or void shape, and is
independent of R the radius of the particle or void.
The experimentally determined Ae was compared to
theoretical values obtained using the von Nardroff
multiple scattering formula for spheres and for random
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surfaces [17]. The von Nardroff formula assumes the
measured angular distribution to be Gaussian. But this
is true only if the single particle scattering angle
distribution falls off faster than Porod behavior (€*),
which generally is not the case. This is consistent with
the behavior of the observed intensity which one
approximates as Gaussian at small angles, but which
falls off much more slowly at large angles.

P. Pizzi [18] collected neutron scattering measure-
ments of Si;N, materials at various densities and heat
treatments to detect microvoids from multiple
refraction effects. Two samples were reaction bonded
with densities of 2.28 and 2.49 gm/cm’ and several
were hot pressed with densities from 3.03 to 3.19
g/cm’. Plots of intensity versus Q (or K) for the
reaction bonded and hot pressed Si;N, at two
wavelengths (fig. 11) reveal wavelength dependency
suggesting the presence of multiple refraction neutron
scattering. Results for three Si;N, samples with
densities of 2.28, 2.46 and 3.18 gm/cm3 give radius
values for the voids of 3, 5 and 2.7 pm respectively.
This would indicate phase shifts, p of 4.6 to 8.6 (see
fig. 2) which probably fall within the intermediate
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Figure 11-SANS from two samples of Si,N, measured at A=0.8 and
1.0 nm. The scattering vector K is the same as Q in this paper.
Densities of the two samples were 2.46X 10° and 3.18 X 10° kg/m’,
respectively (Ref. [18] is source).

beam broadening region between the diffraction and
multiple refraction limits.

Beam Broadening Region

Porosity is a critical aspect in the densification
process of a sintered ceramic material. To elucidate
the extent of such porosity, a quantitative study with
SANS has been conducted at NBS to determine
average pore size. Rather than restricting the SANS
measurements to the typical 1 to 100 nm size regime of
SANS diffraction, we have explored the neutron beam
broadening region by extending the SANS characteri-
zation into the tens of micrometer size regime. This
extension of SANS technique to larger sizes is an
important result because it allows a greater overlap of
SANS characterization with other NDE techniques.

Two samples of YCr0, were fabricated from pure
powders by isostatic pressing at 207 MPa (30,000 psi);
one sample was then sintered [19]. The density of the
“green” compact (the unfired ceramic) was approxi-
mately 57% of theoretical density and that of the
sintered material was approximately 94%. The starting
ceramic powder, with approximately 30% of
theoretical density, was also examined. Since beam
broadening measurements are wavelength dependent,
SANS experiments were taken at six or seven
wavelengths of the following: 0.485, 0.545, 0.625, 0.70,
0.80, 0.90, 0.95, 1.0 nm. The results reveal a striking
difference between the samples as illustrated in figures
12 and 13 which are SANS spectra for the sintered
and “green” compact specimens respectively. The
sintered material (fig. 12) shows little wavelength
dependence but the “green” compact reveals dramatic
beam broadening which is strongly wavelength
dependent (see fig. 13). This dependence is illustrated
in figure 14 by plotting the normalized intensity versus
scattering vector Q for five wavelengths.

The direct beam is wavelength independent with
respect to the scattering angle, € and is defined in part
by the instrumental collimation. Beam broadening data
can resemble a Gaussian distribution at low Q values
where the full width at half maximum, Ae can be
determined by the Gaussian standard deviation
parameter o-; as shown below:

I=1I, exp (-Q*/20%) (12)
For full width at half maximum AQ=2.355 o5,  (13)
Since Q=2me/A, the Ae=0.3748 Ao (14
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Figure 12-SANS spectra for a
sintered compact of YCr0; at
three wavelengths: 0.545, lower
left, 0.7, and 0.9 nm. Plotted is
the scattering intensity versus a
a linear column slice through
the center of the neutron
scattering plane (as indicated
by the row number).

Figure 13-SANS spectra for a
“green” compact of YCr0; at
three wavelengths: 0.545, 0.7,
and 0.9 nm. Plotted is the
scattering intensity versus a
linear column slice through the
center of the neutron scattering
plane (as indicated by the row
number).
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The full width at half maximum for the direct beam,
€, was determined for two different collimating
conditions. In the fine pin-hole geometric configura-
tion (12 and 8 mm) the ¢, is 4.62X 10°%107 radians
which was used in the YCr0, materials. The beam
broadening experiment of Si,N, shown in figure 6 was
obtained under focussed collimation conditions and
the €, is 3.882X 107 rad. =10, The Ae value contains
both the beam broadening scattering and that due
strictly to the direct beam, thus the direct beam,
€, must be subtracted from the experimentally
determined value, €.

2 29172
Ae=[e"-€;]

(15)

An example of the data (squares) and Gaussian fit
(dashed line) for the ‘“green” compact of YCrO, at
A=0.625 nm is shown in figure 15.

Although the qualitative aspects of the data clearly
demonstrate a strong effect of ceramic processing on
the neutron scatterers population in these materials,
quantitative measures of the particle or void size,
shape and size distribution are less straightforward.
Moreover the Ab, A and probably R values
correspond to phase shifts well within the intermediate
range of values for which the neutron scattering is not
expected to be analyzable by multiple refractive
behavior alone. Therefore, a generalized beam
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Figure 15-Normalized intensity versus Q from a “green” YCr0,
compact at A=0.625 nm. The squares are the data with the direct
beam and the dashed line represents the Gaussian fit to the low Q
region. The triangles are the theoretically derived beam broaden
data points which do not include the direct beam. The solid line is
the Gaussian fit through this data fit.

broadening theory [6] relevant for this region and
multiple refraction has been developed to quantitative-
ly analyze the SANS data for densified ceramics and
other distributed defects in this size regime. Figure 15
contains a generated data set from the theory
(triangles) and the Gaussian fit to these data points
(solid line). The Ae does not contain the direct beam



portion. The radius, void (or particle) density ratio
and shape factor can be obtained from this theory,
which can be expanded to consider particle packing,
polydispersivity and various shapes of particles and
voids other than spheres. Excellent agreement of data
and theoretical values for Ae can be seen in figure 16
and table 3. The average radius void size in the YCr0,
“green” compact material is 0.17 pm and has a void
density ratio of 0.42 compared to the overall density
ratio of 0.43.

0.06
YCrOz GREEN COMPACT
0.05+ ® Data
O Theory
0.04 -
v 003}
<
0.02 -
0.0l . L
04 0.6 0.8 1.0

X (nm)

Figure 16-Full width at half maximum, Ae (in radians) versus the
wavelength, A, for voids in the “green” compact of YCr0,. The
squares are the data and the circles are the Ae values derived
from theory.

A powder sample of YCr0; was examined to
compare previously determined average particle size
values with that obtained from SANS experiments.
The YCr0, powder particles were ultrasonically
dispersed and magnetically stirred at a temperature of
32°C [20]. A plot of the cumulative mass percent
versus the equivalent spherical diameter in um,
determined by sedimentation methods, is shown in

Table 3. Ae values for YCrO,*green” compact where Ab=
5.277x 10 nm?, void density ratio=0.42, T=12.2 mm, R=0.17
pm

Ae (radians)
A (nm) Data Theory
0.485 0.01156 0.01137
0.545 0.01525 0.01611
0.625 0.02038 0.02028
0.7 0.02660 0.02645
0.8 0.03598 0.03617
0.9 0.04700 0.04711
0.95 0.05338 0.05322

figure 17. The two runs were reproducible with an
apparent small distribution of powder sizes present.
The average diameter value is approximately 1.4 um
(or R=0.7 pm) and agrees well with the R value
obtained from the SANS analysis of 0.74 um. The
data (squares) and theory values (circles) for R=0.74
pm are shown in figure 18. If we assume that multiple
refraction effects only are present, then a fairly good
fit to the data using von Nardroff formula for random
spheres can be obtained (triangles and dashed line in
fig. 18). However the number of scattering events
determined from this fit is 33.4 which requires R to be
62 pm. This is clearly outside the range of possible
radius values for this material.

T T 1 L T ] T T T T T
100 -
80 YC,0z Powder
604
£
" 4
<
S 407
201
ﬁ
0 i 1 1 J Il 1 1 1 1 1
50 30 20 10 6 4 3 215 10806

Equivalent Spherical Diameter (um)

Figure 17-Size distribution of YCr0; powder particles. A plot of
cumulative mass percent versus the equivalent spherical diameter
by ultrasonic dispersion technique.

The general beam broadening theory and SANS
technique allows us to study the densification process
in a nondestructive way. It is being extended to study
the sintering of spinels (MgAlLO,) as a function of
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Figure 18-Full width at half maximum, Ae¢ (in radians) versus A for
YCr0;, powder particles. The data (squares) theoretically derived
values (circles) and multiple refraction results (triangles) are

temperature. Although the spinel powders have been
heated at 1300 °C for 12 hours, very little sintering has
occurred (fig. 19) but sintering effects are apparent
after only 3 hours at 1500 °C. Nevertheless the
material is not fully sintered in that the €, of the direct
beam (the blank) is significantly smaller than the € of
the spinel at 1500 °C. In situ as well as other ceramic
processing experiments are expected to fully develop
the capabilities of this new approach in SANS. It
should be of interest to other material disciplines such
as magnetic broadening effects, pores in metal alloys
and colloidal chemistry.
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Creep damage in polycrystalline metallic materials can be attributed to cavitation and cracking along the
grain interfaces. Theories of creep cavitation that have been developed in recent years are reviewed. Further
evaluation and/or refinement of these theories has been retarded by a lack of an experimental counterpart.
Small angle neutron scattering studies (SANS) provide one experimental tool which is complementary to
others. SANS done at NBS and elsewhere have shown that this technique is suitable for studying nucleation
and early stage of growth of creep cavities. This would provide the impetus to further progress in this area.

Key words: creep cavitation; creep crack growth; creep damage; creep fracture; high temperature failure of

metals; small angle neutron scattering.

1. Introduction

At high temperatures and low stresses, metals often
fail with an elongation of only a few percent and only
a small reduction in area [1]'. This phenomenon occurs
even in normally ductile materials like copper and
nickel [2]. When metals which have fractured under
the above conditions are examined microscopically, it
is found that they have cavities and cracks distributed
throughout the specimen along grain boundaries as
shown in figure 1. The failure mechanism associated
with these cavities is therefore referred to as
intergranular creep fracture. It is the dominant

About the Authors, Paper: All four authors are
members of organization units within NBS’ Center
for Materials Science. E. R. Fuller, Jr. and T.-J.
Chuang are with the Inorganic Materials Division,
R. J. Fields is with the Fracture and Deformation
Division, and S. Singhal is a member of the
Center’s Reactor Radiation Division. The work on
which they report was supported by the NBS
Office of Nondestructive Evaluation.

! Numbers in brackets refer to references at the end of this paper.
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mechanism of long-term fracture of both 304 stainless
steel and 2-1/4 Cr—1Mo steel, as shown in figure 2
[1,3-7], and of many other commercial alloys.

The cavities usually contain inclusions or second
phase particles, apparently having nucleated on them.
The cavities, once nucleated, grow by the diffusive
movement of atoms from the cavity onto and along
the grain boundary [8] as shown schematically in
figure 3. This mechanism is equivalent to the stress-
directed condensation of vacancies on the cavity. The
migration of atoms (or of vacancies) results in the
extension of the specimen—allowing the applied force
to do work. Most of this work is dissipated by the
diffusive fluxes associated with the redistribution of
matter [9]; some, however, is stored as the energy
associated with the newly created surface area of the
cavities. If the load were removed, the specimen
would contract as the cavities shrink by sintering.
However, it is the nucleation and growth of these
cavities that is of interest here as more and more of
the grain boundaries are consumed and fracture
eventually occurs.

As will be shown, theoretical progress in modeling
creep cavitation has greatly outstripped the experimen-
tal advances or measurements in this field. At present,
there are several viable models that can predict the



Figure 1-(a) Intergranular cavitation in copper tested at 600 °C
viewed edge-on in an optical microscope. (b) Intergranular
cavitation in iron tested at 600 °C, viewed in a scanning electron
microscope on a grain boundary which is exposed by a low
temperature fracture.

accumulation of damage and the time-to-fracture.
Experimental measurements clearly supporting one
model or, at least, rationalizing the differences
between models, have not been available. Indeed, most
experiments have focused on the stress dependence of
the time-to-fracture (an integrated result), and have
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Figure 2-Fracture mechanism maps for 304 stainless steel and 2} Cr-
1 Mo steel showing the regions of stress and temperature in which
intergranular cavitation occurs.

given little attention to size distributions of cavities
and their time dependence. Furthermore, this lack of
experimental measurements for small cavity size
distributions has hindered refinement of the various
theoretical models.
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In this paper, we present small angle neutron
scattering (SANS) results which show that SANS is
quantitatively sensitive to these small cavities. These
results indicate that SANS may be the new technique
to answer many of the pressing questions arising from
existing theoretical treatments of creep cavitation. To
understand what these questions are and how they
have arisen, we first give a brief review of the
theoretical developments in this area of fracture.

Historically, developments in creep cavitation have
focused primarily on the stress dependence of the
time-to-fracture, which, unfortunately, is not directly
related to the cavity size information obtained by
SANS. To indicate this connection, we demonstrate
for several of these models how cavity size varies with
time under stress. Following this review, we briefly
discuss several experimental techniques for obtaining
information on creep cavitation damage and conclude
with a section describing our SANS measurements for
a 304 type stainless steel.

2. Modeling of Creep Cavitation

On the basis of the few available experimental
observations, Hull and Rimmer [10] developed a basic
model for creep cavitation. They assumed that the
cavities are spherical and that diffusion of matter away
from them 1is achieved predominantly by grain
boundary diffusion. According to Fick’s first law, the
flux, J, of matter from the cavity to the grain
boundary is

=-(Dy/kTQ)Vp (M

where D, is the grain boundary diffusivity, Q is the
atomic volume, and Vp is the gradient of chemical
potential. To obtain this last quantity, Hull and
Rimmer assumed that the chemical potential is —o,{)
midway between cavities and -2y Q/r at the periphery
of a cavity, where o, is the applied stress, y, is the
surface energy, and r is the radius of the cavity. By
assuming a linear variation in chemical potential
between these two points, they obtained the following
expression for the flux:

o2y /r

1/2 @

J=(D, /KT) [ ]=2Db0'a/le

where [ is the distance between voids and 2y/r is
assumed to be much less than the applied stress. The
area through which this flux occurs is 27r8,, where §,
is the effective grain boundary thickness. Since each
atom that leaves the cavity increases the cavity’s
volume by (, the total flux results in a net volume
flow of matter,

dV/dt=4mwrD 5,0, Q/KTI ?3)
away from the cavity and onto the grain boundary.

If the cavities are spherical, this volume flow of
matter results in a size rate of cavity growth of

dr/dt=D,6,0,Q/kTIr . 6]
Integrating this result, the time development of the
cavity size is given by

r=[(2Dy8,/)(0,Q/kT)t+r1"

=~[(2D,8,/ (o, /KT)]*1/? )

where 7, is the initial cavity radius, which here is
assumed to be much smaller than the current cavity
size, 7, at time ¢. Hull and Rimmer bypassed this result,
eq (5), and calculated directly the time-to-fracture, f,
as the time for the cavities to grow to one-half their
separation, //2, where they coalesce and failure ensues.
Thus, their final result was

t=(P/8D,8)(KT/ o)
— B(0-/8Dy8,)(0r, /KT ©)
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where p(=B%/P) is the number of cavity nuclei per
unit area of grain boundary and B8 is a geometric
factor related to the coordination number of nearest-
neighbor cavities (for example, 8=1 for a square array
and B=(4/3)"* for an hexagonal array). Although the
time-to-fracture and its stress dependence are the
important parameters from an engineering perspective,
the intermediate result of cavity size as a function of
time, and also of cavity size distributions, are the
important quantities when making a nondestructive
assessment of creep damage for remaining lifetime.
Speight and Harris [11] objected to the assumption
of a linear variation in chemical potential which is a
direct consequence of performing the above, one-
dimensional calculation. Since the cavitation occurs in
one plane, a two-dimensional calculation is required
and this does not lead to a linear variation. Actually,
Hull and Rimmer [10] realized this and had carried out
an elegant calculation for the time-to-fracture in the
appendix of their pioneering paper. In that appendix,
they assumed a two-dimensional, square array of
equal-sized, spherical nuclei. The solution for this

geometry did not result in a linear gradient of .

chemical potential. Despite this modification, the
calculated time-to-failure differed from the above
equation, eq (6), only by a constant factor.

A further modification to the above model was
suggested by Vitovek [12] who pointed out that as the
cavities cover the boundaries, the stress on the
remaining ligaments goes up. Then the assumption
that the chemical potential is determined at all times
by the applied stress must be dropped in favor of a
stress that increases as the internal, loadbearing area
decreases. Harris et al [13] make this adjustment as
well as that suggested by Speight and Harris [11]
earlier, and find that the Hull and Rimmer model
predicts?

?In deriving the equation which ultimately leads to their form of
eq (7). Speight and Harris [11] assumed that the stress midway
between cavities is given by the remote stress, or by an adjusted
ligament stress [13]. This is a valid approximation for small cavities;
but as their results show, the stress can vary substantially across the
grain boundary ligament for larger cavity sizes. Accordingly, in this
regime the remote stress should be equated to the average stress on
the grain-boundary ligament. This modification was first suggested
by Raj and Ashby [14] and their model equates the remote stress to
the average stress in the circular catchment area surrounding each
cavity. This idea should be extended over the entire grain boundary
area which includes the area excluded by the close packing of
circles. We have made this modification in writing both eqs (7) and

©).
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ti=tyx(157°-140-78%)/60

~tyr/13.6  (for a hexagonal array) @)
where #,;z is the combination of material parameters
Dy, 8y, 1, Q) and experimental variables (o, and T)
that represent the time-to-failure in the simple Hull-
Rimmer calculation presented above [see eq (6)]

tir=(/8D,8)KT/c", Q) . ®

In addition to the integrated result of eq (7), Harris et
al. [13] also give a cavity growth relationship, which
for short times has the form

t/tyr=(2/3)x"In(1/x) ®

where x is the normalized cavity size (2r/]). Although
this relationship cannot be inverted analytically to
give the time dependence of the cavity size, one can
easily demonstrate that initial cavity growth rates and
cavity sizes are faster for this modified Hull-Rimmer
model than for the simple calculation, eq (5).

One fault of the Hull-Rimmer model, whether in its
simple or modified form, is that the cavities are
assumed to be spherical. Only very small cavities are
ever observed to be spherical. Usually, they are
ellipsoidal or lenticular in cross-section. As the cavities
grow, their shape frequently becomes more eccentric
and they sometimes resemble long, thin cracks. An
ellipsoidal cavity consumes more grain boundary than
a spherical cavity for the same volume flux. This
means that the above model, which assumes spherical
cavities, will generally overestimate the time-to-
fracture.

The reason for crack-like cavities is apparent. The
shape of a growing cavity is determined by the
interaction between volume or boundary diffusion (the
growth mechanism) and surface, volume, or vapor
diffusion (spheroidizing mechanisms). Surface diffu-
sion is generally the dominant rounding influence,
while grain boundary diffusion is the principal growth
mechanism. As the cavities enlarge, spheroidizing
mechanisms become less effective and the cavities
become more eccentric or penny-shaped.

Chuang and Rice [15] consider a crack-like creep
cavity advancing at a steady state velocity v along the
interface between two grains by the diffusive transport
of atoms into the boundary ahead of the tip. They
assume that spheroidization of the cavity is
accomplished by surface diffusion, and that the cavity



grows under steady-state conditions so that it retains a
constant profile which is described by a crack-tip
radius of curvature, 7, and a crack opening width,
2w, a few radii back from the crack tip. Solving the
surface diffusion problem they find that the crack half-
thickness is given by

w=0.98 V2-y,/7. [D8,yQ/KTv" (10)

where 7, and 1y, are the surface free energy and grain-
boundary free energy, respectively; D, is the surface
diffusivity; and &, is the thickness of the surface
diffusion layer (i.e., the surface density of diffusing
atoms times the atomic volume). The radius of
curvature adjacent to the crack tip is given by

rp=0.931D8,7,Q/KTN" /N 2=/,

~0.95w/(2~7,/7s)- 11

Since v, is usually about one-half vy, (corresponding to
a dihedral angle of about 76°), eq (11) becomes
approximately

w=1.5Tr,,

~1.20[D,8,y,Q/kTv]" . 12)

This shows that the faster a crack grows, the
thinner it becomes. Alternatively, the crack velocity at
a given temperature is inversely proportional to the
third power of the crack thickness. Hence, the time-to-
fracture for thin cracks or cavities is much less than
that for spherical cavities. Chuang et al [16] extend
this analysis to calculate the time-to-fracture when the
life is determined by the growth of cavities whose
shape is determined by the interaction of spheroidizing
and growth mechanisms. They find that

kTly?2 ) 3/2( F )3
tome [ —=Fs )} (2-, / —_—— 13)
f (35Dsasmr: @2 /79 VA+H-1

where

p_ 4lDS/DB) -

3YV 2y,

(14)

and ¢=0.6 is the average value of a slowly varying
function of the cavity size [16]. Equation (13) has two

limiting forms which depend on the relationship
between a combination of material properties and the
applied stress level. At one extreme, failure time is
independent of grain-boundary diffusion and varies as
the inverse third power of stress

8kTly?2

t= (Fpsass) @wr? (5

when o, <0.8(y/D(D,8,/D.5,); whereas at the other
limit, failure time is controlled by both surface and
grain-boundary diffusion and varies as the inverse 3/2
power of stress

" kT 644" 1y DS, \
e~ s sUs 172
~(%b53) (%) () (52) [ as
when o,>150 (}y—s> (%-g—b) .

This concern over the stress dependence of the
time-to-fracture arises from a discrepancy between the
theoretical predictions and experimental fact. The Hull
and Rimmer model [10], and Speight and Harris
modifications [11,13], predict that the time-to-fracture
should vary inversely with the first power of stress.
Indeed, experiments by Raj [17] have indicated that
this may be the case in bicrystal specimens. However,
as shown above, the Chuang et al. model [16], which
considers cavity shape, predicts that under certain
conditions the fracture lifetime will be inversely
proportional to a power of applied stress between 3/2
and 3. Thus, cavity shape can play an important part
in determining how quickly a component will fracture
by grain-boundary cavitation. By pre-nucleating
cavities in silver and other metals, Goods and Nix [18]
found times-to-failure that wvaried inversely with
approximately the third power of stress, thus
providing extremely strong experimental support for
the theory of Chuang et al. [16].

Despite this support for the Chuang-Rice model
[15,16] by creep lifetime measurements on pre-
cavitated metals, the situation is not as clear-cut for
the case where cavities are nucleated naturally on the
grain boundaries. Experimental creep fracture work
generally indicates a stronger inverse power-law stress
dependence than given by either the Hull-Rimmer
model or the Chuang-Rice model. To illustrate this
dependence, creep fracture results for various metals
and alloys [19-22] have been analyzed and are
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presented in table 1. The stress exponent, n, given in
this table is defined by the equation

ti=Bo,”

(16)

where B is a constant of proportionality. The weakest
stress dependences occur for the longest tests or at the
highest temperatures, where n is found to be about 3
or 4; but for shorter times-to-fracture, » becomes quite
large.

Table 1. Stress dependence of time-to-fracture for selected metals.

Metal /Ty 4 n Reference
316 S.S. 0.54 4-20 yr 3.6 Simmons and
0.60 2w-6mo 3.8 van Echo [5]
0.54 1d-6 mo 6.3
0.60 1d-2w 5.3
0.54 34h-3h 14.3
0.60 1h-{h 12.5
304 S.S. 0.52 1-3 yr 3.8 Simmons and
van Echo (5]
1Cr 4 Mo Steel 045 1-10 yr 3.7 Bennewitz [19]
Lead 0.50 1-5 yr 3.0 Gohn et al. [20]
Tungsten 0.83 1-10d 44 Conway et al. [21]
Iron 0.48 10h-1w 10.1 Fields et al. {1]
0.54 Jh-1w 9.0
Copper 0.31 39w 13.5 Carreker and
0.52 2d-1w 4.1 Hibbard [22]

/T, M is the homologous temperature, where Ty is the melting
temperature; and the stress exponent # is defined by f;c o™

Although, as discussed above, the predominance of
experimental evidence is related to the power of the
stress dependence, there are at least two other
important distinctions between the two models that
are amenable to experimental investigation. The first is
the density of cavities on the grain boundary, as
defined, for example, by p(<« 1//?). In the Hull-Rimmer
model, both the time-to-failure and the time required
to grow to a given cavity size are proportional to p™?
(see egs (6) and (9), respectively); whereas in the
Chuang-Rice model, this dependence varies from p™”2
to p~* depending upon the applied stress and the
material properties as defined by the two limiting
cases (see eq (15)). The other distinction between the
two models is the cavity growth rate. The Hull-
Rimmer model predicts a complex time dependence as
prescribed by eq (9); whereas for small cavities, the
Chuang-Rice model predicts a constant cavity growth

rate or a linear time dependence of the normalized
cavity size®,

@r/D=16t/35tcq (17

where tcp is the time-to-failure as given by either eq
(13) or one of its limiting forms, eq (15).

Based on these differences, alternative experimental
techniques, such as small angle neutron scattering
measurements, might help to elucidate the nature of
cavity nucleation kinetics and cavity growth rates by
providing information about cavity size distributions
and how they evolve with time.

Returning, however, to the concern over the high
powers of the stress dependence, Dyson [23], Rice and
Needleman [24], and Rice [25] introduced the idea of
constrained cavity growth to explain this. At high
growth rates, the atoms diffusing away from the
cavities cannot be distributed uniformly along the
grain boundary. This effect locally unloads the regions
around the cavities. Growth then requires the time
dependent plastic straining of the matrix (i.e., creep) to
counteract this load-shedding. Using this idea, the

constrained cavity growth model predicts the
Monkman-Grant [26] relation:
t; €,=constant (18)

where & is the steady state creep rate. This relation is
a commonly found experimental result. The high
powers listed in table 1 might then be explained by
this constrained cavity growth model.

The above models all assume that all nucleation
occurs at the onset of loading and that all the nuclei
begin to grow at the start of the test. Greenwood [27]
shows that most experimental data are consistent with
a model in which the number of cavities is a linear
function of strain, i.e., nucleation occurs throughout
the life of a specimen. Indeed, the fact that Goods and
Nix [18] had to prenucleate cavities to obtain the
Chuang result indicates that nucleation is an important
step in the creep fracture of some metals. This is
another area where a technique such as small angle
neutron scattering can be expected to provide vital
information regarding this creep failure mechanism.

To include continuous nucleation in their analyses,
Raj and Ashby [14] comnsider quantitatively two

3 This equation is derived in the same spirit as Chuang et al. [16]
calculated the time-to-failure.
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models for nucleating new cavities throughout a test:
one without grain boundary sliding, and one with
grain boundary sliding. Without grain boundary
sliding, subcritical or embryonic cavities can become
stable and grow by being thermally activated over the
nucleation barrier. In this case, they applied classical
nucleation theory. The change in free energy on
forming a cavity is calculated by balancing the energy
released when the applied forces do work against the
energy absorbed by the creation of new interfacial
area:

AG=-rF,)o,+ Py Fh)-7oFo)] (19)
where F, and F, are the functions that relate the
surface area of the cavity and the grain-boundary area,
respectively, to the cavity radius squared; F, is a
similar function for the cavity volume; and s is the
cavity dihedral angle given by arccos (y,/2v,). Using
the definitions of the functions F,, F,, and Fj, eq (19)
has been shown to have a maximum at a critical radius
[14]

re=2yJ/o, 20

below which cavities tend to shrink and above which

they tend to grow. Substituting this critical radius into
eq (19), gives the activation energy for nucleation:

AG.=rF,)o./2=4y;F,(p)/ o, . 2y
The area density of critical nuclei, i.e., those that
prefer to neither shrink nor grow, on the grain
boundary is

p = p maxexp[_AGc/kT] (22)
where p,,, is the maximum density of possible
nucleation sites there. The nucleation rate can be
obtained from p, by multiplying eq (22) by the time-
dependent probability, P(t), of adding one vacancy to
a critical nucleus. Raj and Ashby [14] derive P(t) from
the vacancy jump frequency and from the probability
of finding a vacancy at the perimeter of a critical
nucleus. They obtain

P(t)=(4m v/ 0, Q)(Dy8,/ Q") explo, Q/KT] . (23)

By combining eqgs (21), (22), and (23), the nucleation
rate is found to be
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p = (47‘- ')’sD b8b/0'304/3)(pmax_p )

X expl(o,Q-4Y.F )/ )/KT].  (24)

The dominant term in the above equation is
exp(-1/a,%). How does this term in the nucleation rate
affect the time-to-fracture? To obtain the time-to-
fracture, it is necessary to perform a double
integration over time because nucleation occurs
simultaneously with cavity growth. Since exponential
arguments are unaffected by integration, the strong
stress dependence of nucleation will be carried into
the time-to-fracture. Such an exponential dependence
on stress can mimic any power-law dependence of the
form

t=B o," (see eq (16)),

regardless of the value of n, over certain ranges of
stress.

The second type of nucleation mechanism examined
by Raj and Ashby [14] is based on grain boundary
sliding. If there is an inclusion on a sliding grain
boundary, then this sliding is either accommodated by
flow of atoms around the particle or else a gap opens
up. Accommodation is possible at low stresses leading
to low sliding rates, but as the stress and sliding rate
increase the flow intensification at the inclusion also
increases until cavity nucleation occurs. Thus, the
nucleation -rate and the number of nuclei are
dependent on strain and strain rate. Since the rate of
fracture is proportional to the rate of nucleation, an
additional stress dependence similar to that for the
strain rate will enter the expression for the time-to-
fracture. In this way, nucleation considerations can be
used to predict the Monkman-Grant relation.

3. Experimental Techniques
to Study Creep Cavitation

We have discussed four theories: Hull and Rimmer
[10], coupled grain boundary and surface diffusion
controlled growth [15], constrained cavity growth
[23], and continuous cavity nucleation [14]. Of the
numerous theoretical works on creep cavitation, the
models discussed above are the ones supported by
experiment. To some extent, the above models are
mutually exclusive. While it is likely that under
different experimental circumstances, different models
are appropriate, the situation is confusing. Most often,
support for one model over another is determined



from the stress dependence of the time-to-fracture.
Considerably more persuasive support would come
from direct measures of cavity nucleation rates and
subsequent cavity growth rates.

Attempts to experimentally measure these two
quantities have not been conclusive. The two most
common techniques are metallography and density.
Metallographic techniques include microscopy tech-
niques ranging from optical measurements on polished
surfaces to transmission electron microscopy (TEM)
measurements on thin foils. The optical techniques
suffer from a lack of resolution and the difficulties
inherent in preparing a surface without grossly
altering the cavities. The TEM studies usually have
had difficulty finding any cavities due to the limited
material volume which is sampled in each TEM
specimen. When a cavity is found, it is not clear that it
is representative of typical cavities in the material.
Another metallographic technique is to fracture a
specimen along its grain boundaries at low
temperature after it has been crept at elevated
temperature, and to measure the cavitation in a
scanning electron microscope (SEM). This is the most
successful of the metallographic techniques. It is
always a concern, however, that the low temperature
fracture surface has selected the most heavily
cavitated boundaries and may not be representative of
the overall cavitation.

High precision density measurements usually
employ Archimedes’ principle. Since the buoyant fluid
will probably penetrate surface cracks, this technique
will be mainly sensitive to bulk cavitation. This
technique can only tell the total volume of cavities.
For this reason, it cannot be used to study continuous
nucleation, which requires a knowledge of cavity size
distributions.

Two new techniques for studying the cavitation
phenomenon are small angle neutron scattering
(SANS) and x-ray topography or x-radiography.
SANS work has already been performed at NBS and
other laboratories. These initial studies have
demonstrated that SANS is very sensitive to cavitation
and may be the most powerful technique yet tried for
studying nucleation of creep cavities. X-ray techniques
have not been tried yet, but they may provide
information concerning the shape and growth rate of
creep cavities measured in-situ.

SANS is performed by measuring the angular
dispersion of an initially collimated beam of
monochromatic neutrons. This dispersion can be
related to the size and size distribution of scattering
particles, or cavities, by using elements of established
diffraction theory. In addition to the present studies,

SANS studies have been carried out on creep-
damaged stainless steel [28], superalloys [29], and
copper [30]. In every case, the scattering was observed
to increase as the damage increased. The interpreta-
tion of the results for the stainless steel and the
superalloys was clouded by changes in the precipitate
size distribution that occurred during the test.
Furthermore, the scattering in the stainless steel was
attributed to cavities although other techniques, such
as TEM, never revealed the presence of creep cavities.
SANS studies of creep cavitation at NBS to date have
centered on 304 stainless steel. As will be discussed
below, the use of unstressed reference specimens and a
carbide stabilizing heat treatment have virtually
eliminated the ambiguities arising from precipitate
redistribution during the test. Also, microscopic
studies have revealed intergranular cavities in
specimens that have been tested long enough to grow
the cavities to resolvable sizes. Therefore, it is valid to
attribute the neutron scattering to cavitation.

4. SANS Study of Cavitation
in 304 Stainless Steel

304 stainless steel used in high temperature
applications consists mainly of austenite grains and
grain-boundary metal carbides. The carbide-austenite
interface at the grain boundary is a preferential site for
cavity nucleation, which at high temperatures can be
readily activated with low applied stresses by creep
deformation and/or grain-boundary sliding. The
resulting cavities then grow, link, and ultimately cause
failure. The early stages of this process are extremely
slow and the creep cavities, due to their small size, are
not easily detectable or quantifiable. It is these early
stages of nucleation and cavity growth that are
examined here through the use of small angle neutron
scattering.

The structure after cavitation consists of grain-
boundary cavities and two material phases (austenite
and carbides). The unequivocal determination of
cavity size, or size distribution, from a SANS spectra
requires that the creep-induced changes in the carbide
volume fraction, size distribution, and spacial
distribution do not contribute significantly to the
scattered intensity. By adopting special experimental
procedures, the effects due to the carbides could be
minimized. The following two procedures were
employed:

1. All samples were given a stabilizing heat

treatment of 40 h at 775 °C prior to creep
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testing. This resulted in a very coarse and
stable carbide distribution.

2. A heat-treated, but unstressed, reference sample
was placed in the furnace with each creep
specimen. In each case, the SANS spectra of
the unstressed sample was subtracted from
that of the stressed specimen to obtain the
SANS spectra of the creep damage.

The SANS studies were carried out at the NBS
reactor facility using a converging collimation and a
neutron wavelength of 0.625 nm. With this choice of
collimation and wavelength parameters, a scattering
vector (Q) range of 0.05 to 1.5 nm™ (0.005 to 0.15 A™)
could be measured in these experiments. This Q range
measures the scattering contribution of the inhomoge-
neities in the size range of 4 to 120 nm. Detailed
theory and procedures for analyzing SANS data have
been described by Kortorz [31]. A few relevant
features will be discussed here. If the scattered
intensity is denoted by I, the differential scattering
cross-section is given by

d3/dQ=cl/MTd 25)

where d is the sample thickness, M is the total monitor
count (or scattering time), 7T is the sample
transmission, and ¢ is a combination of experimental
constants related to the SANS facility. Creep damage
is related to the difference in differential scattering
cross-sections between the crept sample (C) and the
reference sample (R):

2

e - %R]=C[IC/MCTCdC—JR/MRTRdR]. (6)

Accordingly, all intensities in the following discussion
have been normalized by sample thickness, transmis-
sion, and scattering time. We now assume that the
entire difference in scattering is due to creep cavities
alone. This is justified by the use of the special
procedures described above. Figure 4 shows a
scattering pattern for one set of creep and reference
samples. This figure shows, as did all the samples, that
the crept sample scatters more strongly than the
reference sample. This result supports the assumption
that cavities are the predominant scattering feature,
because carbide coarsening would show up as
decreased scattering. The data are replotted in figure 5
as the difference spectra.

One parameter of major interest is the growth of
average cavity size as a function of time under load. A
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Figure 4-SANS spectra for a 304 stainless steel specimen which was
deformed under a 145 MPa tensile stress at 600 °C for 1493 h
(specimen C-21) and for an undeformed reference specimen

(specimen R-21).
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Figure 5-SANS difference spectra from figure 4 showing the
scattering due to creep-induced cavities.

Guinier analysis [31] was performed on spectra like
figures 4 and 5 to obtain an average cavity size.
Guinier showed that for a randomly distributed
monosized, spherical heterogeneity, the intensity (J)
and scattering vector (Q) relationship can be described
by the equation

I=I, exp[-R. Q%/3} . 27
Here R, is the radius of gyration of the cavities and
for spherical cavities it is related to the cavity radius
(R) by the equation

R=V3/3R, . 28)
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If the cavities are not of one size, then the utility of
the Guinier approximation is limited to a very small Q
range near zero. Figure 6 is a Guinier plot (log I
versus Q) for the difference spectra of figure 5 giving
information about the creep cavitation damage. It is
clear from this plot that cavities in this material must
have a nonuniform size distribution, as a straight line
in these plots can be fitted only over a narrow Q
region near the peak. The cavity diameter obtained by
this procedure normally overestimates the contribu-
tion of large cavities, yet it is a very useful parameter
to study cavity growth as a function of creep time
while degradation is in progress. Using a least square
fit subroutine, the above equation for I was fit to the
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Figure 6-Plot of the Guinier region for the difference spectrum of
figure 5 showing the creep damage in specimen C-21.
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Figure 7-Least squares regression analysis of the linear Guinier
region in figure 6 and the fitted, appropriate data points.

Table 2. Growth of creep cavities as a function of time at con-
stant stress in 304 stainless steel.

Sample Creep parameters Average cavity
diameter—Guinier
Applied stress Time (h) approximation (nm)

c21 145 MPa 745 34.6
(21 ksi)

1493 77.0

C-18 124 MPa 789 26.6
(18 ksi)

1537 76.3

data points in the relevant Q range. A set of
experimental data points and the regression lines are
shown in figure 7. (Note that this figure is plotted as 1
versus Q, so that the regression line is not straight.) A
reasonably accurate fit was obtained in the selected Q
range for this specimen as well as for the other creep
specimens. The average cavity sizes derived for the
various stresses and times under load at 600 °C are
shown in table 2.

Table 2 shows that doubling the creep time at the
same stress apparently doubles the average cavity size,
apparently in agreement with the Chuang-Rice model,
which predicts a constant cavity growth rate. Figure 8
shows cavity size as a function of creep time. If we
include a point at the origin, the linear time
dependence in the growth rate of the cavities is again
apparent, but in the absence of more data points, only
a limited significance can be attached to the trend in
figure 8. Specimens have been tested to intermediate
times and their SANS spectra will be determined
shortly.
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Figure 8-Average cavity diameter for 304 stainless steel specimens
at 600 °C as a function of time and stress.
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From table 2, we see that specimen C-21, which was
stressed at 145 MPa (21 ksi), has a higher average
cavity size after 750 h than specimen C-18 which was

stressed at 124 MPa, (18 ksi). After 1500 h, we find
that the average cavity size at these two stress levels is
not too different. This could indicate that for longer
creep times the size growth of cavities is less sensitive
to small changes in applied stress. A more likely
possibility, as noted by Weertman [30], is that when a
sizable fraction of cavities grows large enough to
scatter at Q values below the minimum resolvable Q
in the experiments, the average size and volume
fraction deduced from the standard SANS analysis are
highly underestimated. Recent efforts have been made
to extend SANS measurements to larger size ranges

[32], for which other techniques have enough
resolution to be effective. In this overlapping size
range, SANS and these other techniques can be
compared with each other to provide some assessment
of their validity in the nonoverlapping size ranges.

The most important development demonstrated here
is that we are capable of measuring cavities at early
times when they are only 20 to 30 nm in diameter.
This must be close to the nucleation event. No other
technique, that we know of, is capable of resolving
this initiation phenomenon. Further work should
provide direct experimental information that will test
the assumptions of the models discussed previously.
Since these models are to be used for predictive
purposes, they must be verified. SANS currently
appears to be the best technique to characterize creep
damage in order to test these theories.

5, Conclusion

Numerous theories of creep cavitation have
developed over the years. The evaluation and further
refinement of these theories has been impeded by a
lack of experimental research in this area. Small angle
neutron scattering studies at NBS and elsewhere have
shown that this technique may provide the necessary
tool for studying nucleation and early growth of
cavities. Such a development would provide the
impetus to further progress in this field.

We wish to thank S. M. Wiederhorn and T. R.

Shives for reviewing this paper and for their helpful
suggestions.
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Calculations are presented for the impedance of a coil as it is moved in the vicinity of a v-groove crack
in the surface of a metallic slab. The coil is modeled as a pair of parallel wires, oriented parallel to the crack,
carrying equal and opposite currents. The inhomogeneous electromagnetic fields in the air above the slab and
in the metal are determined by the boundary integral equation (BIE) method. This approach leads to a pair of
coupled integral equations for the tangential components of the electric and magnetic field vectors on the
surface of the slab containing the crack. The solutions, which are obtained by standard methods of
discretization, are valid for arbitrary ratio of crack or coil dimensions to skin depth. Illustrations are
presented of the Poynting vector distribution over the surface of the metal, including the crack faces. A plot
of the complex impedance is given in the form of a coil scan across the crack.

Key words: boundary integral equations; crack detection; eddy currents; electromagnetic NDE;

nondestructive evaluation.

1. Introduction

In the design of electromagnetic NDE systems for
the detection and examination of cracks or other
defects in conducting materials, it is necessary to have
a quantitative description of the electric and magnetic
fields in the vicinity of the defect. In practice, the
fields are produced by an exciting coil, the impedance
of which is used to provide the detection signal. (The
voltage induced in a secondary pickup coil may also
be used.) In previous work by the author [1,2]', the
fields in the vicinity of a crack were calculated for
models based on excitation by a spatially uniform
applied ac magnetic field such as would be found in
the interior of a solenoid. The present work offers an
improved description of the fields through the
introduction of nonuniformity of the applied field due
to finite coil size and the inclusion of coil position
relative to the crack.

About the Author, Paper: Arnold H. Kahn, a
physicist, is part of the Nondestructive
Characterization Group in the NBS Metallurgy
Division. The work on which he reports was
supported in part by the NBS Office of
Nondestructive Evaluation.

! Figures in brackets indicate literature references at the end of
this paper.

Recently there has been significant activity in the
development of theoretical modeling in electromagnet-
ic NDE. The finite element method has been applied
by Ida and Lord [3] to the cylindrical geometry of
reactor tubing. Studies have been presented by Auld et
al., Kincaid et al., Bahr, and others [4] on experimental
and theoretical considerations of crack detection and
coil design. A principal difficulty is the calculation of
signals when the electromagnetic skin depth and crack
size are of comparable magnitude, which is the domain
of greatest sensitivity. The two-dimensional model of
this paper represents a contribution toward the
solution of this problem. A full three-dimensional
treatment may be possible as new computing
capabilities are developed [3].

2. Description of the Model and
Theoretical Formulation

The calculations described in this paper are based
on the following model: We consider a flat surface
with an infinitely long, symmetrical v-groove
representing a surface crack in a slab of metal. Below
the surface, the material is homogeneous and uniform
in conductivity. A pair of wires carrying equal and
opposite currents is located above the slab and is
oriented parallel to the crack. The wires are
infinitesimal in thickness and infinite in extent. This
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simplified model of an eddy-current testing configura-
tion allows a two-dimensional calculation of the
impedance signals due to the crack. The calculation
will allow for the effect of crack dimensions; coil
dimensions, elevation, and displacement; and the
material parameters of the metal. This is an improve-
ment over calculations in which the exciting field is
spatially uniform.

By solving for the electromagnetic fields first on the
surface of the metal and then at the exciting wires, we
obtain the impedance due to the presence of the
metallic region. If the problem is solved for a plane
surface without the crack, then the additional
impedance due to the crack may be obtained by
subtraction. Also, by solving for different positions of
the wires representing the detection coils, we may
obtain the impedance signal on traversing the crack
and also the signal due to liftoff effects.

The model is illustrated in figure 1. The circles
above the surface represent the wires, with + and -
indicating the direction of the impressed current Ie™,
where o is the angular frequency and ¢ the time. The
current is held at fixed amplitude [, according to the
usual procedure for eddy-current NDE. In the figure
additional parameters are shown: 4 is the separation
between the wires, H is the height of the coil above
the plane, P is the center position of the coil relative to
the crack, D is the depth of the crack, and F is the
half-width of the crack opening.

Because of the symmetry of this two-dimensional
model, the electric and magnetic fields may be derived
from a vector potential, A, which has only one
component, 4, [5], where the z-direction is parallel to
the wires and the crack. If the wires were not parallel
to the crack, a full three-dimensional analysis would be

necessary. The vector potential is thus of the form
A(x,p)e™, where A is complex to represent phase
relations with respect to the exciting current.

In the region above the conductor the vector
potential satisfies a Helmholtz equation. However, at
the frequencies of eddy current testing the transit time
for wave propagation across the region of the crack is
negligibly small and a quasi-static approximation is
satisfactory. Thus, in the region above the metal slab
the vector potential satisfies the Laplace equation,

V24=0, M)
except for the singularities at the wires. Below the
surface, in the metallic region, the Helmholtz equation
is obeyed,

(V24 1D)A=0, ¥)

where

(€)

is the square of the propagation constant, o is the
electrical conductivity, and p is the magnetic
permeability. Here too, displacement currents are
neglected, in this case because the ohmic currents
represented by the k* term are so much larger. At the
boundary surface, including the faces of the crack, the

P=icou

2F

Figure 1-Configuration of model
and parameters for the calcula-
tion of the impedance signal
due to a crack.
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7
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usual conditions of continuity of tangential £ and H,
and normal B and D must hold. In terms of the vector
potential, these conditions are equivalent to the
continuity of 4 and 1/u 84/9n, where a4/9on is the
normal derivative of 4 at the interface. To summarize,
the vector potential must satisfy the Laplace equation
in the upper region, the Helmholtz in the lower
region, and conditions of continuity at the interface,
and it must approach the known form of the impressed
field in the vicinity of the source wires.

The method of solution selected in this paper is an
extension of the boundary integral equation (BIE)
approach [6,7]. This method, usually applied to a
single region, has been used by the author [2] in eddy-
current problems involving excitation by a uniform ac
field. In the present application the method leads to a
pair of coupled Fredholm integral equations of the
first kind, as follows:

By application of Green’s theorem we express the
vector potential in the upper region in terms of the
source fields and the values of 4 and its normal
derivative a4/an on the bounding curve:

9G(r,

SI) 1 ’
on’ A(SHdS

A(N=2(r)+

- f 6(rs) 28 gs. @)

in which dS’ is an element of arc in a planar cross-
section normal to the surface of the metal. In the
above, . is the vector potential due to the source
wires as if the metallic region were absent. The two
integrals give the change due to the induced currents
below the boundary. They are taken over the
boundary ii is the unit normal vector pointing out of
the upper region. The remaining boundary closure at
infinity makes no contribution since the fields decay
with sufficient rapidity. Green’s function for the
Laplace operator is given by

G(r,r)=-1/2m7 log|r-r|; ©)]

it satisfies

V2G(r,r)=-8(r—r"), (6)

where 8 is the two-dimensional Dirac delta function.
For the two-wire case treated in this paper, the source
field S has the form

S =1I[G(r,r )-G(rr)),

where r, and r_ are the positions of the wires which

carry the exciting current, I, parallel and anti-parallel
to the z-direction, respectively. In the metallic region

A()=- J' .65 asas

+ J 9(.5) %S') as’, %)

where & is now the two-dimensional Helmholtz
Green’s function,

g(r’r')=(i/4)H0(l)(k | r-r l )’ (8)

where H" is the Hankel function of the first kind,
order zero. It, too, has a logarithmic singularity and
satisfies the Helmholtz equation with a source,

(V+K) G(rr)=-8(7). ®)

This latter Green’s function contains the complex k
and represents a damped outgoing cylindrical wave at
large values of r-#. In eq (7) we have retained the
same direction of the normal vector fi; hence the
unusual sign convention on the right hand side.

The BIE method prescribes letting » approach the
surface to obtain the fields on the bounding surface.
When we let r=S, a well-defined expression 1is
obtained if we use the Cauchy principal values for the
singular integrals and replace 4 on the boundary by
A/2. For nonmagnetic materials 4 and 24/3n are both
continuous across the boundary, and we shall so
restrict the present calculations. The resulting BIE’s
are

34(S) - f -g;G,(S’S') A(S)dS'

+ f G(S,S) g—’:,(S') ds'=2(S) (10)
1S+ | 2965) g(s)as
) f 9(8,8) g—;‘,(sl) ds'=0 1)

This is a coupled pair of equations for unknowns A(S)
and ?2A4(S)/on on the interface. We may look on the
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inhomogeneous term .#(S) as the driving force for the
system. When 4 and 34/en are found on the
boundary, then the field 4 may be constructed at any
point above the interface by application of eq (4), or
below the interface by application of eq (7).

The ultimate objective is the determination of the
impedance per unit length induced in the wires by the
presence of the metallic region. The time-average of
the power per unit length delivered by the exciting
wires is given by the complex expression

P=} [ E'J*da,

where J is the (constant) current density in the wires,
E’ is the electric field at the wires produced by the
induced currents, and da is an element of cross-
sectional area normal to the wires. E’ is derived from
the vector potential 4’ of the induced currents,

A'=4-%,
by the usual relation
E'=iwA’.

Hence, for a set of idealized line-wires, denumerated
by the index i, we have

P=13I*iwd,.

Connection with conventional circuit parameters can
be made by expressing P in terms of the currents,
voltages per unit length, and impedance per unit
length of the wires. Under the constant current
assumption of eddy current testing, we have

=13V =13I1}Z,

where V] is the voltage per unit length induced in the
ith wire and Z, is the extra impedance in the ith wire
due to induced currents in the metallic region. Finally
we obtain

Z=iwd!/I,

for the impedance per unit length in the ith wire,
caused by the induction. Now 4, is evaluated at the ith
wire and can be computed by use of Green’s theorem
after 4 and 24/an have been found on the interface.
Thus we have a method of computing the extra
impedance seen by each wire due to the presence of
the metal below. These impedances may now be
calculated with and without a crack being present.
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3. Numerical Treatment

The coupled integral equations are solved by an
application of the method of moments [8]. The
solution is expressed as a linear combination of a finite
set of basis functions with unknown coefficients. The
coefficients are determined by requiring that the
integral equations be satisfied at a number of points
equal to the number of unknown coefficients; i.e.,
point-matching is used.

For the basis functions, the elements F shown in
figure 2 were used, after the method of Harrington [8].

1.0
N
4 \
y
F / \\
0.5 7 <
/ \
/ \
/ N
’ \
0.0 « - >
SN-1 Sn SN+1

Figure 2-Triple-pulse hat function F used in the numerical calcula-
tions. The illustration shows the function F(S-S,). The dashed
line is the common triangular hat-function.

We approximate the solution for the vector potential
and its normal derivative on the interface by the finite
sums:

A(S)=32A,; F(S-S) (12)
and
24(S)
n = 2N, F(S-S) (13)

These expansions are introduced into the integral
equations, egs (10) and (11). The integration over each
element is carried out by use of the midpoint rule for
the entire integrand of each flat section of the
fundamental element, except when the Green’s
function is singular, i.e., when S;=S;.

When a singular integrand occurs in the evaluation
of eq (10), the integration of the logarithmic Green’s
function is performed exactly. When a singular
integrand occurs in eq (11), the dominant logarithmic
part of the Hankel function is used for the evaluation.

The width of the elements is not restricted. It was
found practical to use a fine grid where the solution



was large or varying rapidly, and a coarse grid
elsewhere. With these approximations and the point-
matching, the coupled integral equations are reduced
to a linear algebraic system of the form:

+36, (—";—‘—:)] —7, (14)
i)
-5 9 (5) =0 15)

In these equations, each doubly-subscripted term
corresponds to that part of the integrations of eqs (10)
and (11) connecting element j and matching-point .
The calculations were first attempted with square
pulse functions as the basis set. It was found that the
solutions were unstable in the vicinity of the crack
corners and near the location of a grid-size change.
The use of the triple pulse element is equivalent to
doubling the number of points in a pulse function
calculation, but applying the constraint that the
solution at each point be averaged with its two nearest
neighbors. In addition to reducing the dimensions of
the needed matrices, this has a smoothing effect and
leads to solutions which are stable as the grid size is
decreased. The triple pulse basis function may be
looked upon as an approximation to the common
triangular hat-function, shown in figure 2 by the
dashed line. The hat-function yields a piecewise
trapezoidal approximation to the solution which
would be superior to the present form, but its
application is precluded because of nonintegrability

when multiplied by the Hankel functions of the
integrand. The solution of the linear equations was
obtained by Gaussian elimination without pivoting.
The logarithmic singularities of the Green’s functions
associated with the diagonal elements of the matrices
allow this economical simplification. The solutions
were considered to have converged when further
refinement produced an insignificant change in the
physical results, usually about 1 percent. Typically the
dimension of the square matrices ranged from 200 to
300.

4. Coil Impedance in the Absence
of a Crack

The radiation field of an oscillating dipole above a
conducting earth was a problem first attacked
successfully by Sommerfeld [9]. Analytical solutions
have been given for finite coils by Dodd et al. [10,11].
These solutions are in the form of integrals over
various Bessel function arguments. Numerical
evaluation is possible; analytic evaluation is in terms of
asymptotic series. The same methods can be applied to
this problem of a pair of parallel wires over a plane.
However, the approach of this publication is readily
applicable in the absence of a crack. Solving an
integral equation requires a greater computing effort
than evaluating an integral solution for the lesser
problem. However, it is quite useful to have the
programs available as a byproduct of the crack case.
In this section we examine the results of calculations
for the parallel wire coil above a flat conducting half-
space, calculated by the boundary integral equation
method.

In figure 3 we show the results of a typical
calculation. For this case, and all others reported here,

FLAT SURFACE
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Figure 3-Poynting vector on the
surface of a metallic slab in the
absence of a crack. The

POYNTING VECTOR
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coordinate x is along the flat
surface of the metal. Distances
are in units of the skin-depth
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and the Poynting vector is in’
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lengths are in units of the skin depth 8, where

§=V2/copu, (16)

and the symbols under the radical are the same as
before. The complex Poynting vector S, represents the
time average of the complex energy flux, in our
application, across the surface of the conductor. In the
units we are using, we have

S—1EXH*
; *

where A and 94/an' are calculated by solving the
coupled boundary integral equations. While our
principal interest is in the impedance change of the
exciting wires, the Poynting vector plots show a
detailed picture of the radiation field. The plots are
useful for assessing the convergence of the
calculations as well as for showing the regions of the
test material where the significant absorption and field
penetration take place.

S. Coil Impedance With a Crack

The presence of the crack adds two more
parameters to the required inputs to the calculation.
We treat only a symmetric v-groove crack which we
specify by its depth and the half-width at its mouth.
The calculations are performed in the same way as
without the crack, with the only difference being that

FLAT SURFACE

the needed matrices are larger in dimension and
somewhat more complex in preparation. The
algorithms for the solution are identical to those of the
previous case. The output of the program is the
impedance per unit length of the wires, with the crack
present. In addition we may inspect the complex
Poynting vector on the surface of the crack as well as
on the flat surface of the test material.

For the initial investigations we selected a crack
depth of 2.0 6 and an opening of half-width 0.25 6.
The coil wires were taken as having a separation of
1.0 6 and at an elevation of 1.0 & above the plane.
These dimensions correspond to the physical situation
of a No. 30 AWG wire insulated pair in close contact,
elevated one radius above the contact with the plane,
and driven at a frequency of 110 kHz. The relevant
parameters for this model applied to aluminum are
given in table 1.

Table 1. Parameters for model calculation based on aluminum
at 110 kHz.

Resistivity p 2.82x10® Q.m(20 °C)

Conductivity o(=1/p)  3.54x107 Q'm*

Skin depth & 0.255 mm

Crack depth (=26) 0.51 mm

Crack half-opening (6/4) 0.064 mm

Wire radius (6/2) 0.13 mm

The calculations were performed for a range of values
of the parameter P, the location of the coil center
relative to the crack. Figures 4, 5, and 6 s